Displaying publications 81 - 100 of 449 in total

Abstract:
Sort:
  1. Zulkifli FH, Hussain FSJ, Harun WSW, Yusoff MM
    Int J Biol Macromol, 2019 Feb 01;122:562-571.
    PMID: 30365990 DOI: 10.1016/j.ijbiomac.2018.10.156
    This study is focusing to develop a porous biocompatible scaffold using hydroxyethyl cellulose (HEC) and poly (vinyl alcohol) (PVA) with improved cellular adhesion profiles and stability. The combination of HEC and PVA were synthesized using freeze-drying technique and characterized using SEM, ATR-FTIR, TGA, DSC, and UTM. Pore size of HEC/PVA (2-40 μm) scaffolds showed diameter in a range of both pure HEC (2-20 μm) and PVA (14-70 μm). All scaffolds revealed high porosity above 85%. The water uptake of HEC was controlled by PVA cooperation in the polymer matrix. After 7 days, all blended scaffolds showed low degradation rate with the increased of PVA composition. The FTIR and TGA results explicit possible chemical interactions and mass loss of blended scaffolds, respectively. The Tg values of DSC curved in range of HEC and PVA represented the miscibility of HEC/PVA blend polymers. Higher Young's modulus was obtained with the increasing of HEC value. Cell-scaffolds interaction demonstrated that human fibroblast (hFB) cells adhered to polymer matrices with better cell proliferation observed after 7 days of cultivation. These results suggested that biocompatible of HEC/PVA scaffolds fabricated by freeze-drying method might be suitable for skin tissue engineering applications.
    Matched MeSH terms: Cellulose/analogs & derivatives*; Cellulose/pharmacology; Cellulose/chemistry
  2. Ramlli, M.A., Isa, M.I.N., Yu, K.X., Siew, Y.W.
    ASM Science Journal, 2018;11(101):47-55.
    MyJurnal
    Affordable and greener materials were extensively studied in electrode fabrication for Liion
    based batteries but less interest was shown to proton battery. Hence, in this work,
    a methodology on preparing a natural based binder for proton battery was reported. 2-
    Hydroxyethyl Cellulose (2HEC) was chosen to replace PVDF commercial binder in electrode
    for ZnSO4|MnO2 proton battery configuration. SEM image shows good surface formation
    for both anode and cathode with good porous structure. OCV result shows that the cell
    improved the stable voltage of reference cell of 0.7 V to 0.9 V after 24 hours. The first
    discharge of the cell took 6 hours and 49 minutes at 0.005mA and shows good potential for
    rechargebility test.
    Matched MeSH terms: Cellulose
  3. Yasim-Anuar TAT, Ariffin H, Norrrahim MNF, Hassan MA, Andou Y, Tsukegi T, et al.
    Polymers (Basel), 2020 Apr 17;12(4).
    PMID: 32316664 DOI: 10.3390/polym12040927
    Two different liquid assisted processing methods: internal melt-blending (IMB) and twin-screw extrusion (TWS) were performed to fabricate polyethylene (PE)/cellulose nanofiber (CNF) nanocomposites. The nanocomposites consisted maleic anhydride-grafted PE (PEgMA) as a compatibilizer, with PE/PEgMA/CNF ratio of 97/3/0.5-5 (wt./wt./wt.), respectively. Morphological analysis exhibited that CNF was well-dispersed in nanocomposites prepared by liquid-assisted TWS. Meanwhile, a randomly oriented and agglomerated CNF was observed in the nanocomposites prepared by liquid-assisted IMB. The nanocomposites obtained from liquid-assisted TWS exhibited the best mechanical properties at 3 wt.% CNF addition with an increment in flexural strength by almost 139%, higher than that of liquid-assisted IMB. Results from this study indicated that liquid feeding of CNF assisted the homogenous dispersion of CNF in PE matrix, and the mechanical properties of the nanocomposites were affected by compounding method due to the CNF dispersion and alignment.
    Matched MeSH terms: Cellulose
  4. Safian MT, Sekeri SH, Yaqoob AA, Serrà A, Jamudin MD, Mohamad Ibrahim MN
    Talanta, 2022 Mar 01;239:123109.
    PMID: 34864531 DOI: 10.1016/j.talanta.2021.123109
    With each passing year, the agriculture and wood processing industries generate increasingly high tonnages of biomass waste, which instead of being burned or left to accumulate should be utilized more sustainably. In parallel, advances in green technology have encouraged large companies and nations to begin using eco-friendly materials, including eco-friendly emulsifiers, which are used in various industries and in bio-based materials. The emulsion-conducive properties of lignocellulosic materials such as cellulose, hemicellulose, and lignin, the building blocks of plant and wood structures, have demonstrated a particular ability to alter the landscape of emulsion technology. Beyond that, the further modification of their structure may improve emulsion stability, which often determines the performance of emulsions. Considering those trends, this review examines the performance of lignocellulosic materials after modification according to their stability, droplet size, and distribution by size, all of which suggest their outstanding potential as materials for emulsifying agents.
    Matched MeSH terms: Cellulose
  5. Bheel N, Sohu S, Jhatial AA, Memon NA, Kumar A
    Environ Sci Pollut Res Int, 2022 Jan;29(4):5207-5223.
    PMID: 34420161 DOI: 10.1007/s11356-021-16034-3
    This experimental research was conducted to study the combined effect of agricultural by-product wastes on the properties of concrete. The coconut shell ash (CSA) was utilized to substitute cement content ranging from 0 to 20% by weight of total binder and sugarcane bagasse ash (SCBA) to substitute fine aggregates (FA) ranging from 0 to 40% by weight of total FA. In this regard, a total of 300 concrete specimens (cylinders and cubes) were prepared using 1:1.5:3 mix proportions with a 0.52 water-binder ratio. The study investigated the workability, density, permeability, and mechanical properties in terms of compressive and splitting tensile strengths. Additionally, the total embodied carbon for all mix proportions was calculated. It was observed that with an increase in CSA and SCBA contents, the workability, density, and permeability reduced significantly. Due to CSA and SCBA being pozzolanic materials, a gain in compressive and splitting tensile strengths was observed for certain concrete mixes, after which the strength decreased. The increase in embodied carbon of SCBA increased the total embodied carbon of concrete; however, it can be said that C15S40 which consists of 15% CSA and 40% SCBA is the optimum mix that achieved 28.75 MPa and 3.05 MPa compressive and tensile strength, respectively, a reduction of 4% total embodied carbon.
    Matched MeSH terms: Cellulose
  6. Channa SH, Mangi SA, Bheel N, Soomro FA, Khahro SH
    Environ Sci Pollut Res Int, 2022 Jan;29(3):3555-3564.
    PMID: 34387820 DOI: 10.1007/s11356-021-15877-0
    Globally, concrete is widely implemented as a construction material and is progressively being utilized because of growth in urbanization. However, limited resources and gradual depravity of the environment are forcing the research community to obtain alternative materials from large amounts of agro-industrial wastes as a partial replacement for ordinary cement. Cement is a main binding resource in concrete production. To reduce environmental problems associated with waste, this study considered the recycling of agro-industrial wastes, such as sugarcane bagasse ash (SCBA), rice husk ash (RHA), and others, into cement, and to finally bring sustainable and environmental-friendly concrete. This study considered 5%, 10%, and 15% of SBCA and RHA individually to replace ordinary Portland cement (OPC) by weight method then combined both ashes as 10%, 20%, and 30% to replace OPC to produce sustainable concrete. It was experimentally declared that the strength performance of concrete was reduced while utilizing SCBA and RHA individually and combined as supplementary cementitious material (SCM) at 7, 28, 56, and 90 days, respectively. Moreover, the initial and final setting time is increased as the quantity of replacement level of OPC with SCBA and RHA separates and together as SCM in the mixture. Based on experimental findings, it was concluded that the use of 5% of SCBA and 5% of RHA as cement replacement material individually or combined in concrete could provide appropriate results for structural applications in concrete.
    Matched MeSH terms: Cellulose
  7. Bheel N, Ali MOA, Tafsirojjaman, Khahro SH, Keerio MA
    Environ Sci Pollut Res Int, 2022 Jan;29(4):5224-5239.
    PMID: 34417691 DOI: 10.1007/s11356-021-15954-4
    In recent years, the research direction is shifted toward introducing new supplementary cementitious materials (SCM) in lieu of in place of Portland cement (PC) in concrete as its production emits a lot of toxic gases in the atmosphere which causes environmental pollution and greenhouse gases. SCM such as sugarcane bagasse ash (SCBA), metakaolin (MK), and millet husk ash (MHA) are available in abundant quantities and considered as waste products. The primary aim of this experimental study is to investigate the effect of SCBA, MK, and MHA on the fresh and mechanical properties of concrete mixed which contributes to sustainable development. A total of 228 concrete specimens were prepared with targeted strength of 25MPa at 0.52 water-cement ratio and cured at 28 days. It is found that the compressive strength and split tensile strength were enhanced by 17% and 14.28%, respectively, at SCBA4MK4MHA4 (88% PC, 4% SCBA, 4% MK, and 4% MHA) as ternary cementitious material (TCM) in concrete after 28 days. Moreover, the permeability and density of concrete are found to be reduced when SCBA, MK, and MHA are used separately and combined as TCM increases in concrete at 28 days, respectively. The results showed that the workability of the fresh concrete was decreased with the increase of the percentage of SCBA, MK, and MHA separately and together as TCM in concrete.
    Matched MeSH terms: Cellulose
  8. K R, S VK, Saravanan P, Rajeshkannan R, Rajasimman M, Kamyab H, et al.
    Environ Res, 2024 Jan 01;240(Pt 2):117521.
    PMID: 37890825 DOI: 10.1016/j.envres.2023.117521
    Carbohydrates are a class of macromolecules that has significant potential across several domains, including the organisation of genetic material, provision of structural support, and facilitation of defence mechanisms against invasion. Their molecular diversity enables a vast array of essential functions, such as energy storage, immunological signalling, and the modification of food texture and consistency. Due to their rheological characteristics, solubility, sweetness, hygroscopicity, ability to prevent crystallization, flavour encapsulation, and coating capabilities, carbohydrates are useful in food products. Carbohydrates hold potential for the future of therapeutic development due to their important role in sustained drug release, drug targeting, immune antigens, and adjuvants. Bio-based packaging provides an emerging phase of materials that offer biodegradability and biocompatibility, serving as a substitute for traditional non-biodegradable polymers used as coatings on paper. Blending polyhydroxyalkanoates (PHA) with carbohydrate biopolymers, such as starch, cellulose, polylactic acid, etc., reduces the undesirable qualities of PHA, such as crystallinity and brittleness, and enhances the PHA's properties in addition to minimizing manufacturing costs. Carbohydrate-based biopolymeric nanoparticles are a viable and cost-effective way to boost agricultural yields, which is crucial for the increasing global population. The use of biopolymeric nanoparticles derived from carbohydrates is a potential and economically viable approach to enhance the quality and quantity of agricultural harvests, which is of utmost importance given the developing global population. The carbohydrate biopolymers may play in plant protection against pathogenic fungi by inhibiting spore germination and mycelial growth, may act as effective elicitors inducing the plant immune system to cope with pathogens. Furthermore, they can be utilised as carriers in controlled-release formulations of agrochemicals or other active ingredients, offering an alternative approach to conventional fungicides. It is expected that this review provides an extensive summary of the application of carbohydrates in the realms of food, pharmaceuticals, and environment.
    Matched MeSH terms: Cellulose
  9. Shah MA, Hayder G, Kumar R, Kumar V, Ahamad T, Kalam MA, et al.
    Sci Rep, 2023 Aug 30;13(1):14248.
    PMID: 37648719 DOI: 10.1038/s41598-023-41446-1
    A comprehensive understanding of physiochemical properties, thermal degradation behavior and chemical composition is significant for biomass residues before their thermochemical conversion for energy production. In this investigation, teff straw (TS), coffee husk (CH), corn cob (CC), and sweet sorghum stalk (SSS) residues were characterized to assess their potential applications as value-added bioenergy and chemical products. The thermal degradation behavior of CC, CH, TS and SSS samples is calculated using four different heating rates. The activation energy values ranged from 81.919 to 262.238 and 85.737-212.349 kJ mol-1 and were generated by the KAS and FWO models and aided in understanding the biomass conversion process into bio-products. The cellulose, hemicellulose, and lignin contents of CC, CH, TS, and SSS were found to be in the ranges of 31.56-41.15%, 23.9-32.02%, and 19.85-25.07%, respectively. The calorific values of the residues ranged from 17.3 to 19.7 MJ/kg, comparable to crude biomass. Scanning electron micrographs revealed agglomerated, irregular, and rough textures, with parallel lines providing nutrient and water transport pathways in all biomass samples. Energy Dispersive X-ray spectra and X-ray diffraction analysis indicated the presence of high carbonaceous material and crystalline nature. FTIR analysis identified prominent band peaks at specific wave numbers. Based on these findings, it can be concluded that these residues hold potential as energy sources for various applications, such as the textile, plastics, paints, automobile, and food additive industries.
    Matched MeSH terms: Cellulose
  10. Ketabchi MR, Masoudi Soltani S, Chan A
    Environ Sci Pollut Res Int, 2023 Sep;30(41):93722-93730.
    PMID: 37515618 DOI: 10.1007/s11356-023-28892-0
    The bio- and thermal degradation as well as the water absorption properties of a novel biocomposite comprising cellulose nanoparticles, natural rubber and polylactic acid have been investigated. The biodegradation process was studied through an assembled condition based on the soil collected from the central Malaysian palm oil forests located in the University of Nottingham Malaysia. The effects of the presence of the cellulose nanoparticles and natural rubber on the biodegradation of polylactic acid were investigated. The biodegradation process was studied via thermal gravimetric analysis and scanning electron microscopy. It was understood that the reinforcement of polylactic acid with cellulose nanoparticles and natural rubber increases the thermal stability by ~ 20 °C. Limited amorphous regions on the surface of the cellulose nanoparticles accelerated the biodegradation and water absorption processes. Based on the obtained results, it is predicted that complete biodegradation of the synthesised biocomposites can take place in 3062 h, highlighting promising agricultural applications for this biocomposite.
    Matched MeSH terms: Cellulose
  11. Yusuf J, Sapuan SM, Ansari MA, Siddiqui VU, Jamal T, Ilyas RA, et al.
    Int J Biol Macromol, 2024 Jan;255:128121.
    PMID: 37984579 DOI: 10.1016/j.ijbiomac.2023.128121
    Material is an inseparable entity for humans to serve different purposes. However, synthetic polymers represent a major category of anthropogenic pollutants with detrimental impacts on natural ecosystems. This escalating environmental issue is characterized by the accumulation of non-biodegradable plastic materials, which pose serious threats to the health of our planet's ecosystem. Cellulose is becoming a focal point for many researchers due to its high availability. It has been used to serve various purposes. Recent scientific advancements have unveiled innovative prospects for the utilization of nanocellulose within the area of advanced science. This comprehensive review investigates deeply into the field of nanocellulose, explaining the methodologies employed in separating nanocellulose from cellulose. It also explains upon two intricately examined applications that emphasize the pivotal role of nanocellulose in nanocomposites. The initial instance pertains to the automotive sector, encompassing cutting-edge applications in electric vehicle (EV) batteries, while the second exemplifies the use of nanocellulose in the field of biomedical applications like otorhinolaryngology, ophthalmology, and wound dressing. This review aims to provide comprehensive information starting from the definitions, identifying the sources of the nanocellulose and its extraction, and ending with the recent applications in the emerging field such as energy storage and biomedical applications.
    Matched MeSH terms: Cellulose
  12. Norfarhana AS, Ilyas RA, Ngadi N, Othman MHD, Misenan MSM, Norrrahim MNF
    Int J Biol Macromol, 2024 Jan;256(Pt 1):128256.
    PMID: 38000585 DOI: 10.1016/j.ijbiomac.2023.128256
    The potential for the transformation of lignocellulosic biomass into valuable commodities is rapidly growing through an environmentally sustainable approach to harness its abundance, cost-effectiveness, biodegradability, and environmentally friendly nature. Ionic liquids (ILs) have received considerable and widespread attention as a promising solution for efficiently dissolving lignocellulosic biomass. The fact that ILs can act as solvents and reagents contributes to their widespread recognition. In particular, ILs are desirable because they are inert, non-toxic, non-flammable, miscible in water, recyclable, thermally and chemically stable, and have low melting points and outstanding ionic conductivity. With these characteristics, ILs can serve as a reliable replacement for traditional biomass conversion methods in various applications. Thus, this comprehensive analysis explores the conversion of lignocellulosic biomass using ILs, focusing on main components such as cellulose, hemicellulose, and lignin. In addition, the effect of multiple parameters on the separation of lignocellulosic biomass using ILs is discussed to emphasize their potential to produce high-value products from this abundant and renewable resource. This work contributes to the advancement of green technologies, offering a promising avenue for the future of biomass conversion and sustainable resource management.
    Matched MeSH terms: Cellulose
  13. Hanafi A, Nograles N, Abdullah S, Shamsudin MN, Rosli R
    J Pharm Sci, 2013 Feb;102(2):617-26.
    PMID: 23192729 DOI: 10.1002/jps.23389
    Cellulose acetate phthalate (CAP) microcapsules were formulated to deliver plasmid DNA (pDNA) to the intestines. The microcapsules were characterized and were found to have an average diameter of 44.33 ± 30.22 μm, and were observed to be spherical with smooth surface. The method to extract pDNA from CAP was modified to study the release profile of the pDNA. The encapsulated pDNA was found to be stable. Exposure to the acidic and basic pH conditions, which simulates the pH environment in the stomach and the intestines, showed that the release occurred in a stable manner in the former, whereas it was robust in the latter. The loading capacity and encapsulation efficiency of the microcapsules were low but the CAP recovery yield was high which indicates that the microcapsules were efficiently formed but the loading of pDNA can be improved. In vitro transfection study in 293FT cells showed that there was a significant percentage of green-fluorescent-protein-positive cells as a result of efficient transfection from CAP-encapsulated pDNA. Biodistribution studies in BALB/c mice indicate that DNA was released at the stomach and intestinal regions. CAP microcapsules loaded with pDNA, as described in this study, may be useful for potential gene delivery to the intestines for prophylactic or therapeutic measures for gastrointestinal diseases.
    Matched MeSH terms: Cellulose/administration & dosage; Cellulose/analogs & derivatives*; Cellulose/chemical synthesis; Cellulose/metabolism
  14. Sulaiman S, Mokhtar MN, Naim MN, Baharuddin AS, Sulaiman A
    Appl Biochem Biotechnol, 2015 Feb;175(4):1817-42.
    PMID: 25427594 DOI: 10.1007/s12010-014-1417-x
    Nanobiocatalysis is a new frontier of emerging nanosized material support in enzyme immobilization application. This paper is about a comprehensive review on cellulose nanofibers (CNF), including their structure, surface modification, chemical coupling for enzyme immobilization, and potential applications. The CNF surface consists of mainly -OH functional group that can be directly interacted weakly with enzyme, and its binding can be improved by surface modification and interaction of chemical coupling that forms a strong and stable covalent immobilization of enzyme. The knowledge of covalent interaction for enzyme immobilization is important to provide more efficient interaction between CNF support and enzyme molecule. Enzyme immobilization onto CNF is having potential for improving enzymatic performance and production yield, as well as contributing toward green technology and sustainable sources.
    Matched MeSH terms: Cellulose/chemistry*
  15. Halib N, Mohd Amin MC, Ahmad I, Abrami M, Fiorentino S, Farra R, et al.
    Eur J Pharm Sci, 2014 Oct 1;62:326-33.
    PMID: 24932712 DOI: 10.1016/j.ejps.2014.06.004
    This paper focuses on the micro- and nano-topological organization of a hydrogel, constituted by a mixture of bacterial cellulose and acrylic acid, and intended for biomedical applications. The presence of acrylic acid promotes the formation of two interpenetrated continuous phases: the primary "pores phase" (PP) containing only water and the secondary "polymeric network phase" (PNP) constituted by the polymeric network swollen by the water. Low field Nuclear Magnetic Resonance (LF NMR), rheology, Scanning Electron Microscopy (SEM) and release tests were used to determine the characteristics of the two phases. In particular, we found that this system is a strong hydrogel constituted by 81% (v/v) of PP phase the remaining part being occupied by the PNP phase. Pores diameters span in the range 10-100 μm, the majority of them (85%) falling in the range 30-90 μm. The high PP phase tortuosity indicates that big pores are not directly connected to each other, but their connection is realized by a series of interconnected small pores that rend the drug path tortuous. The PNP is characterized by a polymer volume fraction around 0.73 while mesh size is around 3 nm. The theoretical interpretation of the experimental data coming from the techniques panel adopted, yielded to the micro- and nano-organization of our hydrogel.
    Matched MeSH terms: Cellulose/chemistry*
  16. Alshelmani MI, Loh TC, Foo HL, Lau WH, Sazili AQ
    ScientificWorldJournal, 2014;2014:729852.
    PMID: 25019097 DOI: 10.1155/2014/729852
    Four cellulolytic and hemicellulolytic bacterial cultures were purchased from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Culture (DSMZ) and the American Type Culture Collection (ATCC). Two experiments were conducted; the objective of the first experiment was to determine the optimum time period required for solid state fermentation (SSF) of palm kernel cake (PKC), whereas the objective of the second experiment was to investigate the effect of combinations of these cellulolytic and hemicellulolytic bacteria on the nutritive quality of the PKC. In the first experiment, the SSF was lasted for 12 days with inoculum size of 10% (v/w) on different PKC to moisture ratios. In the second experiment, fifteen combinations were created among the four microbes with one untreated PKC as a control. The SSF lasted for 9 days, and the samples were autoclaved, dried, and analyzed for proximate analysis. Results showed that bacterial cultures produced high enzymes activities at the 4th day of SSF, whereas their abilities to produce enzymes tended to be decreased to reach zero at the 8th day of SSF. Findings in the second experiment showed that hemicellulose and cellulose was significantly (P < 0.05) decreased, whereas the amount of reducing sugars were significantly (P < 0.05) increased in the fermented PKC (FPKC) compared with untreated PKC.
    Matched MeSH terms: Cellulose/metabolism*
  17. Zainudin MHM, Hassan MA, Tokura M, Shirai Y
    Bioresour Technol, 2013 Nov;147:632-635.
    PMID: 24012093 DOI: 10.1016/j.biortech.2013.08.061
    The composting of lignocellulosic oil palm empty fruit bunch (OPEFB) with continuous addition of palm oil mill (POME) anaerobic sludge which contained nutrients and indigenous microbes was studied. In comparison to the conventional OPEFB composting which took 60-90 days, the rapid composting in this study can be completed in 40 days with final C/N ratio of 12.4 and nitrogen (2.5%), phosphorus (1.4%), and potassium (2.8%), respectively. Twenty-seven cellulolytic bacterial strains of which 23 strains were closely related to Bacillus subtilis, Bacillus firmus, Thermobifida fusca, Thermomonospora spp., Cellulomonas sp., Ureibacillus thermosphaericus, Paenibacillus barengoltzii, Paenibacillus campinasensis, Geobacillus thermodenitrificans, Pseudoxanthomonas byssovorax which were known as lignocellulose degrading bacteria and commonly involved in lignocellulose degradation. Four isolated strains related to Exiguobacterium acetylicum and Rhizobium sp., with cellulolytic and hemicellulolytic activities. The rapid composting period achieved in this study can thus be attributed to the naturally occurring cellulolytic and hemicellulolytic strains identified.
    Matched MeSH terms: Cellulose/metabolism*
  18. Haafiz MK, Hassan A, Zakaria Z, Inuwa IM, Islam MS, Jawaid M
    Carbohydr Polym, 2013 Oct 15;98(1):139-45.
    PMID: 23987327 DOI: 10.1016/j.carbpol.2013.05.069
    In this work, polylactic acid (PLA) composites filled with microcrystalline cellulose (MCC) from oil palm biomass were successfully prepared through solution casting. Fourier transform infrared (FT-IR) spectroscopy indicates that there are no significant changes in the peak positions, suggesting that incorporation of MCC in PLA did not result in any significant change in chemical structure of PLA. Thermogravimetric analysis was conducted on the samples. The T50 decomposition temperature improved with addition of MCC, showing increase in thermal stability of the composites. The synthesized composites were characterized in terms of tensile properties. The Young's modulus increased by about 30%, while the tensile strength and elongation at break for composites decreased with addition of MCC. Scanning electron microscopy (SEM) of the composites fractured surface shows that the MCC remained as aggregates of crystalline cellulose. Atomic force microscopy (AFM) topographic image of the composite surfaces show clustering of MCC with uneven distribution.
    Matched MeSH terms: Cellulose/chemistry*
  19. Prepageran N, Raman R
    Med J Malaysia, 2007 Mar;62(1):87.
    PMID: 17682585
    The management of epistaxis in patient with coagulopathies can be traumatic for both the patient and the attending physician. This can be rather frustrating especially in children with haematological malignancies. Packing these children’s nasal cavity can be difficult and the trauma associated with the packing can further aggravate epistaxis.
    Matched MeSH terms: Cellulose, Oxidized/therapeutic use*
  20. Zainuddin SY, Ahmad I, Kargarzadeh H, Abdullah I, Dufresne A
    Carbohydr Polym, 2013 Feb 15;92(2):2299-305.
    PMID: 23399291 DOI: 10.1016/j.carbpol.2012.11.106
    Biodegradable materials made from cassava starch and kenaf fibers were prepared using a solution casting method. Kenaf fibers were treated with NaOH, bleached with sodium chlorite and acetic buffer solution, and subsequently acid hydrolyzed to obtain cellulose nanocrystals (CNCs). Biocomposites in the form of films were prepared by mixing starch and glycerol/sorbitol with various filler compositions (0-10 wt%). X-ray diffraction revealed that fiber crystallinity increased after each stage of treatment. Morphological observations and size reductions of the extracted cellulose and CNCs were studied using field emission scanning electron microscopy and transmission electron microscopy. The effects of different treatments and filler contents of the biocomposites were evaluated through mechanical tests. Results showed that the tensile strengths and moduli of the biocomposites increased after each treatment and the optimum filler content was 6%.
    Matched MeSH terms: Cellulose/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links