Displaying publications 81 - 100 of 124 in total

Abstract:
Sort:
  1. Bull AT, Idris H, Sanderson R, Asenjo J, Andrews B, Goodfellow M
    Extremophiles, 2018 Jan;22(1):47-57.
    PMID: 29101684 DOI: 10.1007/s00792-017-0976-5
    The data reported in this paper are among the first relating to the microbiology of hyper-arid, very high altitude deserts and they provide base line information on the structure of actinobacterial communities. The high mountain Cerro Chajnantor landscape of the Central Andes in northern Chile is exposed to the world's most intense levels of solar radiation and its impoverished soils are severely desiccated. The purpose of this research was to define the actinobacterial community structures in soils at altitudes ranging from 3000 to 5000 m above sea level. Pyrosequencing surveys have revealed an extraordinary degree of microbial dark matter at these elevations that includes novel candidate actinobacterial classes, orders and families. Ultraviolet-B irradiance and a range of edaphic factors were found to be highly significant in determining community compositions at family and genus levels of diversity.
    Matched MeSH terms: Sunlight
  2. Wen Min Yun, Yu Bin Ho, Eugenie Sin Sing Tan, Vivien How
    MyJurnal
    Bisphenol A (BPA) is a controversial plastics ingredient used mainly in the production of polycarbonate plastics (PC) and epoxy resins that widely used nowadays in food and drink packaging. Even though BPA is not involved in polyethylene terephthalate (PET) manufacturing, recent study had reported the present of BPA in PET water bottle. This study was conducted to investigate effects storage conditions on release of BPA from PC and PET bottled water as well as to assess health risks associated with consumption. Methods: Solid phase extraction (SPE) was used to extract the samples, followed by analysis using ultra high performance liquid chromatography with fluorescence detector (UHPLC-FLD). The possibility of developing chronic non-carcinogenic health risk among consumers of bottled water was evaluated using hazard quotient (HQ). Results: Results showed that BPA migrated from PC and PET water bottles at concentrations ranging from 9.13 to 257.67 ng/L and 11.53 ng/L to 269.87 ng/L respectively. Concentrations of BPA were higher in PET bottled water compared to PC bottled water across all storage conditions. Higher storage temperature and longer storage duration increased BPA concentrations in PC and PET bottled water. Concentrations of BPA in bottled water which were kept in a car and were exposed to sunlight were higher than control samples which were stored indoor at room temperature. Conclusion: No significant chronic non-carcinogenic health risks were calculated for daily ingestion of BPA-contaminated bottled water; calculated HQ was less than one.
    Matched MeSH terms: Sunlight
  3. Hanif M, Khattak M, Amin M, Ramzan M, Zakir S, Ullah S, et al.
    Sains Malaysiana, 2016;45:489-497.
    A 1.7 m2 flat plate solar air heater was designed and developed in the Department of Agricultural Mechanization, The University of Agriculture Peshawar, Pakistan in collaboration with the Department of Environmental Sciences, University of Peshawar, Pakistan. It was operated under an average solar irradiance of 0.9 kJ.m-2.h-1 in the month of September, 2013. It worked under an efficiency of 7.5 to 21%. The heat collected by the air heater was given to air flowing as a medium inside it. This hot air was given to a drying section and water heating tank for drying and water heating purposes. The drying section provided a temperature in the range of 40-50oC and humidity of 10-30% from 10:00 am to 3:00 pm. The water heating tank provides hot water with a temperature of 35- 45oC from 10:00 am to 5:00 pm. Furthermore, the drying section was used to dry apples, onions and persimmons. All the products showed a consistent moisture loss from them with an optimum drying rate. The two term exponential model showed that all the three products dried have a good correlation with drying time with R2 values higher than 0.90. It was concluded that flat plate solar air heaters is the best technology for water heating and drying purposes and is a good alternative of conventional energy sources.
    Matched MeSH terms: Sunlight
  4. Fazli FIM, Nayan N, Ahmad MK, Mohd Napi Ml, Hamed NKA, Khalid NS
    Sains Malaysiana, 2016;45:1197-1200.
    Titanium dioxide (TiO2
    ) nanoparticles thin film has been successfully synthesized by a spray pyrolysis deposition method
    by using an air compressor on a fluorine-doped tin oxide (FTO) substrate and was annealed at different temperature. TiO2
    is the most common oxide as an electrode in dye sensitized solar cell (DSSC) which still has chances of improvements to
    increase its efficiency as an electrode. The efficiency of a DSSC was relatively low but modifications on every part of a
    DSSC were currently in research progress and an increase in adsorbed dye molecules was considered a potential. Thus,
    the influences of annealing temperature on structural and morphological properties of TiO2
    have been studied using
    X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively, while the efficiency of
    the films in a solar cell was studied by a solar simulator. The FESEM result showed several degrees of porosity obtained
    by varying the annealing temperature. The crystallinity of TiO2 investigated by XRD showed that the crystallinity of the
    TiO2
    thin films was generally unaffected by the annealing temperature. The relationship between the properties and the
    efficiency of the films as an electrode was also studied
    Matched MeSH terms: Sunlight
  5. Nikathirah Yusoff, Li-ngee Ho, Soon-an Ong, Yee-shian Wong, Wanfadhilah Khalik, Muhammad Fahmi Ridzwan
    Sains Malaysiana, 2017;46:2507-2514.
    Zinc oxide (ZnO) utilization in advanced oxidation process (AOP) via solar-photocatalytic process was a promising method for alternative treating wastewater containing phenol. The ZnO photocatalyst semiconductor was synthesized by sol-gel method. The morphology of the ZnO nanostructures was observed by using scanning electron microscope (SEM) and the crystallite phase of the ZnO was confirmed by x-ray diffraction (XRD). The objective of this study was to synthesis ZnO nanoparticles through a sol-gel method for application as a photocatalyst in the photodegradation of phenol under solar light irradiation. The photodegradation rate of phenol increased with the increasing of ZnO loading from 0.2 until 1.0 g. Only 2 h were required for synthesized ZnO to fully degrade the phenol. The synthesized ZnO are capable to totally degrade high initial concentration up until 45 mg L-1 within 6 h of reaction time. The photodegradation of phenol by ZnO are most favoured under the acidic condition (pH3) where the 100% removal achieved after 2 h of reaction. The mineralization of phenol was monitored through chemical oxygen demand (COD) reduction and 92.6% or removal was achieved. This study distinctly utilized natural sunlight as the sole sources of irradiation which safe, inexpensive; to initiate the photocatalyst for degradation of phenol.
    Matched MeSH terms: Sunlight
  6. Samantaray MR, Mondal AK, Murugadoss G, Pitchaimuthu S, Das S, Bahru R, et al.
    Materials (Basel), 2020 Jun 19;13(12).
    PMID: 32575516 DOI: 10.3390/ma13122779
    This article provides an overview of the structural and physicochemical properties of stable carbon-based nanomaterials and their applications as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). The research community has long sought to harvest highly efficient third-generation DSSCs by developing carbon-based CEs, which are among the most important components of DSSCs. Since the initial introduction of DSSCs, Pt-based electrodes have been commonly used as CEs owing to their high-electrocatalytic activities, thus, accelerating the redox couple at the electrode/electrolyte interface to complete the circuit. However, Pt-based electrodes have several limitations due to their cost, abundance, complicated facility, and low corrosion resistance in a liquid electrolyte, which further restricts the large-area applications of DSSCs. Although carbon-based nanostructures showed the best potential to replace Pt-CE of DSSC, several new properties and characteristics of carbon-CE have been reported for future enhancements in this field. In this review, we discuss the detailed synthesis, properties, and performances of various carbonaceous materials proposed for DSSC-CE. These nano-carbon materials include carbon nanoparticles, activated carbon, carbon nanofibers, carbon nanotube, two-dimensional graphene, and hybrid carbon material composites. Among the CE materials currently available, carbon-carbon hybridized electrodes show the best performance efficiency (up to 10.05%) with a high fill factor (83%). Indeed, up to 8.23% improvements in cell efficiency may be achieved by a carbon-metal hybrid material under sun condition. This review then provides guidance on how to choose appropriate carbon nanomaterials to improve the performance of CEs used in DSSCs.
    Matched MeSH terms: Sunlight
  7. Khalik WF, Ho LN, Ong SA, Voon CH, Wong YS, Yusuf SY, et al.
    Environ Sci Pollut Res Int, 2018 Dec;25(35):35164-35175.
    PMID: 30328543 DOI: 10.1007/s11356-018-3414-z
    The objective of this study was to investigate several operating parameters, such as open circuit, different external resistance, pH, supporting electrolyte, and presence of aeration that might enhance the degradation rate as well as electricity generation of batik wastewater in solar photocatalytic fuel cell (PFC). The optimum degradation of batik wastewater was at pH 9 with external resistor 250 Ω. It was observed that open circuit of PFC showed only 17.2 ± 7.5% of removal efficiency, meanwhile the degradation rate of batik wastewater was enhanced to 31.9 ± 15.0% for closed circuit with external resistor 250 Ω. The decolorization of batik wastewater in the absence of photocatalyst due to the absorption of light irradiation by dye molecules and this process was known as photolysis. The degradation of batik wastewater increased as the external resistor value decreased. In addition, the degradation rate of batik wastewater also increased at pH 9 which was 74.4 ± 34.9% and at pH 3, its degradation rate was reduced to 19.4 ± 8.7%. The presence of aeration and sodium chloride as supporting electrolyte in batik wastewater also affected its degradation and electricity generation. The maximum absorbance of wavelength (λmax) of batik wastewater at 535 nm and chemical oxygen demand gradually decreased as increased in irradiation time; however, batik wastewater required prolonged irradiation time to fully degrade and mineralize in PFC system.
    Matched MeSH terms: Sunlight
  8. Lim PF, Leong KH, Sim LC, Abd Aziz A, Saravanan P
    Environ Sci Pollut Res Int, 2019 Feb;26(4):3455-3464.
    PMID: 30515688 DOI: 10.1007/s11356-018-3821-1
    In this work, a sunlight-sensitive photocatalyst of nanocubic-like titanium dioxide (TiO2) and N-doped graphene quantum dots (N-GQDs) is developed through a simple hydrothermal and physical mixing method. The successful amalgamation composite photocatalyst characteristics were comprehensively scrutinized through various physical and chemical analyses. A complete removal of bisphenol A (BPA) is attained by a synthesized composite after 30 min of sunlight irradiation as compared to pure TiO2. This clearly proved the unique contribution of N-GQDs that enhanced the ability of light harvesting especially under visible light and near-infrared region. This superior characteristic enables it to maximize the absorbance in the entire solar spectrum. However, the increase of N-GQDs weight percentage has created massive oxygen vacancies that suppress the generation of active radicals. This resulted in a longer duration for a complete removal of BPA as compared to lower weight percentage of N-GQDs. Hence, this finding can offer a new insight in developing effective sunlight-sensitive photocatalysts for various complex organic pollutants degradation.
    Matched MeSH terms: Sunlight
  9. Bais AF, Bernhard G, McKenzie RL, Aucamp PJ, Young PJ, Ilyas M, et al.
    Photochem Photobiol Sci, 2019 Mar 01;18(3):602-640.
    PMID: 30810565 DOI: 10.1039/c8pp90059k
    This report assesses the effects of stratospheric ozone depletion and anticipated ozone recovery on the intensity of ultraviolet (UV) radiation at the Earth's surface. Interactions between changes in ozone and changes in climate, as well as their effects on UV radiation, are also considered. These evaluations focus mainly on new knowledge gained from research conducted during the last four years. Furthermore, drivers of changes in UV radiation other than ozone are discussed and their relative importance is assessed. The most important of these factors, namely clouds, aerosols and surface reflectivity, are related to changes in climate, and some of their effects on short- and long-term variations of UV radiation have already been identified from measurements. Finally, projected future developments in stratospheric ozone, climate, and other factors affecting UV radiation have been used to estimate changes in solar UV radiation from the present to the end of the 21st century. New instruments and methods have been assessed with respect to their ability to provide useful and accurate information for monitoring solar UV radiation at the Earth's surface and for determining relevant exposures of humans. Evidence since the last assessment reconfirms that systematic and accurate long-term measurements of UV radiation and stratospheric ozone are essential for assessing the effectiveness of the Montreal Protocol and its Amendments and adjustments. Finally, we have assessed aspects of UV radiation related to biological effects and human health, as well as implications for UV radiation from possible solar radiation management (geoengineering) methods to mitigate climate change.
    Matched MeSH terms: Sunlight
  10. Mayangsari E, Mustika A, Nurdiana N, Samad NA
    Med Arch, 2024;78(2):88-91.
    PMID: 38566862 DOI: 10.5455/medarh.2024.78.88-91
    BACKGROUND: Prolonged exposure to sunlight is known to induce photoaging of the skin, leading to various skin changes and disorders, such as dryness, wrinkles, irregular pigmentation, and even cancer. Ultraviolet A (UVA) and ultraviolet B (UVB) radiation are particularly responsible for causing photoaging.

    OBJECTIVE: This study aims to identify and compare photoaging rat models exposed to UVA and UVB.

    METHODS: This research method compared macroscopic (scoring degree of wrinkling) and microscopic (histology) signs and symptoms on skin samples of rat exposed to UVA and UVB for 4 weeks at a radiation dose of 840mJ/cm2.

    RESULTS: The results of this study indicated that the degree of wrinkling was highest in rat skin exposed to UVB rays by 51% (p<0.05). UVB histological results showed that the epidermis layer (40 µm, p<0.05) was thickened and the dermis layer (283 µm, p<0.05) was thinned in the skin of mice exposed to UVB light. The UVB group, showed the density of collagen in the dermis with a mean value of 55% (p<0.05).

    CONCLUSION: Our results suggest that short-term exposure to UVB radiation (in the acute, subacute or subchronic phase) induces more rapid and pronounced damage to rat skin when compared to UVA radiation exposure.

    Matched MeSH terms: Sunlight
  11. Dhivagar R, Suraparaju SK, Atamurotov F, Kannan KG, Opakhai S, Omara AAM
    Water Sci Technol, 2024 Jun;89(12):3325-3343.
    PMID: 39150427 DOI: 10.2166/wst.2024.189
    In this current investigation, the experimental performance of a solar still basin was significantly enhanced by incorporating snail shell biomaterials. The outcomes of the snail shell-augmented solar still basin (SSSS) are compared with those of a conventional solar still (CSS). The utilization of snail shells proved to facilitate the reduction of saline water and enhance its temperature, thereby improving the productivity of the SSSS. Cumulatively, the SSSS productivity was improved by 4.3% over CSS. Furthermore, the SSSS outperformed in energy and exergy efficiency of CSS by 4.5 and 3.5%, respectively. Economically, the cost per liter of distillate (CPL) for the CSS was 3.4% higher than SSSS. Moreover, the SSSS showed a shorter estimated payback period (PBP) of 141 days which was 6 days less than CSS. Considering the environmental impact, the observed CO2 emissions from the SSSS were approximately 14.6% higher than CSS over its 10-year lifespan. Notably, the SSSS exhibited a substantial increase in the estimated carbon credit earned (CCE) compared to the CSS. Ultimately, the research underscores the efficacy of incorporating snail shells into solar still basins as a commendable approach to organic waste management, offering economic benefits without compromising environmental considerations.
    Matched MeSH terms: Sunlight
  12. Javed M, Akbar N, Khan AA, Masood A, Ahmed N, Khan MJ, et al.
    Environ Sci Pollut Res Int, 2024 Aug;31(40):53532-53551.
    PMID: 39192152 DOI: 10.1007/s11356-024-34753-1
    Worldwide environmental challenges pose critical problems with the growth of the global economy. Addressing these issues requires the development of an eco-friendly and sustainable catalyst for degrading organic dye pollutants. In this study, copper-doped magnesium aluminates (CuxMg1-xAl2O4) with x = 0.0-0.8 were synthesized using a citrate-based combustion route. The inclusion of Cu(II) significantly impacted the structural, microstructural, optical, and photocatalytic activity of the catalyst. Rietveld analysis of X-ray diffraction powder profiles revealed single-phase spinels crystallized in the face-centered cubic unit cell with Fd 3 ¯ m space group. Chemical states of the ions, surface morphology, and elemental investigation were analyzed by X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. UV-visible and diffuse reflectance spectroscopies confirmed the reduction of the band gap due to Cu(II) doping, validated by first-principle investigations using the WIEN2k code. The catalyst with x = 0.8 showed higher photocatalytic efficacy (90% and 93%) for removing two azo organic dye pollutants, rhodamine B and methyl orange, respectively, within 120 min. Degradation kinetics followed a pseudo-first-order mechanism. The doped (0.8) sample was structurally and morphologically stable and reusable under visible irradiation, retaining performance after three runs. Scavenger studies confirmed hydroxyl and superoxide radicals' involvement in the degradation. This work presents an effective approach to enhancing CuxMg1-xAl2O4 catalysts' photodegradation performance, with potential applications in pharmaceuticals and wastewater remediation.
    Matched MeSH terms: Sunlight
  13. Bauer M, Glenn T, Alda M, Andreassen OA, Angelopoulos E, Ardau R, et al.
    J Affect Disord, 2014;167:104-11.
    PMID: 24953482 DOI: 10.1016/j.jad.2014.05.032
    The onset of bipolar disorder is influenced by the interaction of genetic and environmental factors. We previously found that a large increase in sunlight in springtime was associated with a lower age of onset. This study extends this analysis with more collection sites at diverse locations, and includes family history and polarity of first episode.
    Matched MeSH terms: Sunlight/adverse effects*
  14. Fong CY, Ong FN, Ong LC, Khoo TB, Lee ML
    Spinal Cord, 2020 Sep;58(9):1030-1036.
    PMID: 32060410 DOI: 10.1038/s41393-020-0441-7
    STUDY DESIGN: Cross-sectional study.

    OBJECTIVE: To determine the prevalence and potential risk factors of vitamin D deficiency and insufficiency among Malaysian children with spina bifida.

    SETTING: Four Malaysian tertiary hospitals.

    METHODS: Children with spina bifida were assessed for potential demographic, disease severity and lifestyle risk factors for vitamin D deficiency and insufficiency. Blood for 25-hydroxy vitamin D (25(OH)D) was taken. Vitamin D deficiency was defined as 25(OH)D levels ≤ 37.5 nmol/L and insufficiency as 37.6-50 nmol/L.

    RESULTS: Eighty children aged 2-18 years (42 males) participated in the study. Vitamin D levels ranged from 14 to 105 nmol/L (mean 52.8, SD 19.1). Vitamin D deficiency was identified in 18 (22.5%) and insufficiency in 26 (32.5%) children. Logistic regression analysis showed that skin exposure to sunlight ≤ 21% body surface area (OR: 6.2, CI 1.7-22.9) and duration of sun exposure ≤ 35 min/day (OR: 4.0, CI 1.2-14.1) were significant risk factors for vitamin D deficiency and insufficiency, respectively.

    CONCLUSIONS: Over half (55%) of Malaysian children with spina bifida seen in urban tertiary hospitals have vitamin D insufficiency and deficiency. Lifestyle sun exposure behaviours were risk factors for vitamin D deficiency and insufficiency.

    Matched MeSH terms: Sunlight*
  15. Bauer M, Glenn T, Alda M, Andreassen OA, Angelopoulos E, Ardau R, et al.
    J Psychiatr Res, 2019 06;113:1-9.
    PMID: 30878786 DOI: 10.1016/j.jpsychires.2019.03.001
    In many international studies, rates of completed suicide and suicide attempts have a seasonal pattern that peaks in spring or summer. This exploratory study investigated the association between solar insolation and a history of suicide attempt in patients with bipolar I disorder. Solar insolation is the amount of electromagnetic energy from the Sun striking a surface area on Earth. Data were collected previously from 5536 patients with bipolar I disorder at 50 collection sites in 32 countries at a wide range of latitudes in both hemispheres. Suicide related data were available for 3365 patients from 310 onset locations in 51 countries. 1047 (31.1%) had a history of suicide attempt. There was a significant inverse association between a history of suicide attempt and the ratio of mean winter solar insolation/mean summer solar insolation. This ratio is smallest near the poles where the winter insolation is very small compared to the summer insolation. This ratio is largest near the equator where there is relatively little variation in the insolation over the year. Other variables in the model that were positively associated with suicide attempt were being female, a history of alcohol or substance abuse, and being in a younger birth cohort. Living in a country with a state-sponsored religion decreased the association. (All estimated coefficients p 
    Matched MeSH terms: Sunlight*
  16. Jamil NA, Yew MH, Noor Hafizah Y, Gray SR, Poh BK, Macdonald HM
    Public Health Nutr, 2018 Dec;21(17):3118-3124.
    PMID: 30176950 DOI: 10.1017/S1368980018002057
    OBJECTIVE: To compare the contributions of UVB exposure and diet to total vitamin D among Asians living in Kuala Lumpur (KL) and Aberdeen (AB).

    DESIGN: Longitudinal study.

    SETTING: UVB exposure (using polysulfone film badges) and skin colour and dietary vitamin D intake (by web-based questionnaire) were measured at each season in AB and during south-west (SWM) and north-east monsoons (NEM) in KL.

    SUBJECTS: One hundred and fifteen Asians in KL and eighty-five Asians in AB aged 20-50 years.

    RESULTS: Median summer UVB exposure of Asians in AB (0·25 SED/d) was higher than UVB exposure for the KL participants (SWM=0·20 SED/d, P=0·02; NEM= 0·14 SED/d, P<0·01). UVB exposure was the major source of vitamin D in KL year-round (60%) but only during summer in AB (59%). Median dietary vitamin D intake was higher in AB (3·50 µg/d (140 IU/d)), year-round, than in KL (SWM=2·05 µg/d (82 IU/d); NEM=1·83 µg/d (73 IU/d), P<0·01). Median total vitamin D (UVB plus diet) was higher in AB only during summer (8·45 µg/d (338 IU/d)) compared with KL (SWM=6·03 µg/d (241 IU/d), P=0·04; NEM=5·35 µg/d (214 IU/d), P<0·01), with a comparable intake across the full year (AB=5·75 µg/d (230 IU/d); KL=6·15 µg/d (246 IU/d), P=0·78).

    CONCLUSIONS: UVB exposure among Asians in their home country is low. For Asians residing at the northerly latitude of Scotland, acquiring vitamin D needs from UVB exposure alone (except in summer) may be challenging due to low ambient UVB in AB (available only from April to October).

    Matched MeSH terms: Sunlight*
  17. Nurbazlin M, Chee WS, Rokiah P, Tan AT, Chew YY, Nusaibah AR, et al.
    Asia Pac J Clin Nutr, 2013;22(3):391-9.
    PMID: 23945409 DOI: 10.6133/apjcn.2013.22.3.15
    Ultraviolet B sunlight exposure is a primary source of vitamin D. There have been reports of low vitamin D status amongst the Malaysian population despite it being a tropical country. This study was conducted to determine the influence of sun exposure on 25(OH)D concentrations in urban and rural women in Malaysia and factors predicting 25(OH)D concentrations. Women aged above 45 years were recruited from urban (n=107) and rural areas (n=293). Subjects were interviewed regarding their outdoor activities and usual outdoor attire over the previous week. 25(OH)D concentrations were analyzed using the vitamin D3 (25-OH) electrochemiluminescence immunoassay. Median (Q1-Q3) age of the participants was 57 (53-61) years old. Median (Q1-Q3) 25(OH)D concentration of rural women was significantly higher [69.5 (59.0-79.1) nmol/L] compared to urban women [31.9 (26.1- 45.5) nmol/L] (p<0.001). Rural women spent more time in the sun compared to urban women (7.83 (3.67-14.7) vs 2.92 (1.17-4.92) hours, p<0.001), although the fraction of body surface area (BSA) exposed to sunlight was significantly higher in the urban group [0.21 (0.21-0.43) vs 0.12 (0.07-0.17), p<0.001]. The calculated sun index (hours of sun exposure per week × fraction of BSA) was significantly higher in rural [0.89 (0.42-1.83)] compared to urban women [0.72 (0.26-1.28)], p=0.018. In the stepwise linear regression, rural dwelling increased the serum 25(OH)D by 31.74 nmol/L and 25(OH)D concentrations increased by 1.93 nmol/L for every unit increment in sun index. Urban women in Malaysia had significantly lower vitamin D status compared to rural women. Rural dwelling and sun index were key factors influencing vitamin D status in Malaysian women.
    Matched MeSH terms: Sunlight*
  18. Chia SE, Wong KY, Cheng C, Lau W, Tan PH
    Asian Pac J Cancer Prev, 2012;13(7):3179-85.
    PMID: 22994730
    BACKGROUND: Most of the epidemiology studies on the effects of sun exposure and prostate cancer were conducted among the temperate countries of North America and Europe. Little is known about the influence on Asian populations. The purpose of current study was to evaluate any association of sun exposure with risk of prostate cancer in Chinese, Malays and Indians who reside in the tropics.

    METHODS: The Singapore Prostate Cancer Study is a hospital-based case-control study of 240 prostate cancer incident cases and 268 controls conducted in Singapore between April 2007 and May 2009. Detailed information on outdoor activities in the sun, skin colour, sun sensitivity and other possible risk factors were collected in personal interviews. Cases were further classified by Gleason scores and TNM staging. Odds ratios (OR) and 95% confidence intervals (CI) were calculated using unconditional logistic regression analysis, adjusted for age, ethnicity, education, family history of any cancers, BMI and skin colour.

    RESULTS: We found that prostate cancer risk was increased in subjects with black/dark-brown eyes (OR 5.88, 95%CI 3.17-10.9), darker skin colour e.g. tan/dark brown/black (OR 7.62, 95%CI 3.41-17.0), frequent sunburn in lifetime (OR 4.30, 95%CI 1.7-11.2) and increased general sun exposure in adulthood per week (OR 2.03, 95%CI 1.09-3.81). The increased risk was consistent for high grade tumours and advanced stage prostate cancers.

    CONCLUSION: The findings from this study suggest that excessive sun exposure is a risk factor for prostate cancer in Asians.

    Matched MeSH terms: Sunlight/adverse effects*
  19. Al-Naggar RA, Al-Naggar TH, Bobryshev YV
    Asian Pac J Cancer Prev, 2011;12(4):995-9.
    PMID: 21790240
    INTRODUCTION: Malignant melanoma in particular is one of the few remaining cancers with an increasing incidence.

    OBJECTIVES: The objective of this study is to explore the perceptions and opinions of young Malaysians towards skin cancer prevention.

    METHODOLOGY: Focus group discussions were conducted among 33 medical science students from Management and Science University (MSU), Shah Alam, Malaysia, using convenience sampling. Students were divided into 4 focus groups consisting of 8, 8, 9 and 8 students respectively. The facilitator wrote down the conversations and data obtained were classified into various categories and analyzed manually.

    RESULTS: The majority of the participants mentioned that overexposure to ultraviolet light is the commonest cause of skin cancer but also that the most benefit we get from sun ight is vitamin D synthesis. The majority mentioned that the best prevention measure for skin cancer is using a sunscreen, followed by limit exposure to the sun.

    CONCLUSION: The present study demonstrated there is a lack of knowledge regarding screening methods and prevention measures of skin cancer. Therefore, there is a need to establish health education unit in all universities to educate all university students regarding various health problems including skin cancer prevention.
    Matched MeSH terms: Sunlight/adverse effects
  20. Stoutjesdijk E, Schaafsma A, Nhien NV, Khor GL, Kema IP, Hollis BW, et al.
    Br J Nutr, 2017 Nov;118(10):804-812.
    PMID: 29103383 DOI: 10.1017/S000711451700277X
    Breast-fed infants are susceptible to vitamin D deficiency rickets. The current vitamin D 'adequate intake' (AI) for 0-6-month-old infants is 10 µg/d, corresponding with a human milk antirachitic activity (ARA) of 513 IU/l. We were particularly interested to see whether milk ARA of mothers with lifetime abundant sunlight exposure reaches the AI. We measured milk ARA of lactating mothers with different cultural backgrounds, living at different latitudes. Mature milk was derived from 181 lactating women in the Netherlands, Curaçao, Vietnam, Malaysia and Tanzania. Milk ARA and plasma 25-hydroxyvitamin D (25(OH)D) were analysed by liquid-chromatography-MS/MS; milk fatty acids were analysed by GC-flame ionisation detector (FID). None of the mothers reached the milk vitamin D AI. Milk ARA (n; median; range) were as follows: Netherlands (n 9; 46 IU/l; 3-51), Curaçao (n 10; 31 IU/l; 5-113), Vietnam: Halong Bay (n 20; 58 IU/l; 23-110), Phu Tho (n 22; 28 IU/l; 1-62), Tien Giang (n 20; 63 IU/l; 26-247), Ho-Chi-Minh-City (n 18; 49 IU/l; 24-116), Hanoi (n 21; 37 IU/l; 11-118), Malaysia-Kuala Lumpur (n 20; 14 IU/l; 1-46) and Tanzania-Ukerewe (n 21; 77 IU/l; 12-232) and Maasai (n 20; 88 IU/l; 43-189). We collected blood samples of these lactating women in Curaçao, Vietnam and from Tanzania-Ukerewe, and found that 33·3 % had plasma 25(OH)D levels between 80 and 249·9 nmol/l, 47·3 % between 50 and 79·9 nmol/l and 19·4 % between 25 and 49·9 nmol/l. Milk ARA correlated positively with maternal plasma 25(OH)D (range 27-132 nmol/l, r 0·40) and milk EPA+DHA (0·1-3·1 g%, r 0·20), and negatively with latitude (2°S-53°N, r -0·21). Milk ARA of mothers with lifetime abundant sunlight exposure is not even close to the vitamin D AI for 0-6-month-old infants. Our data may point at the importance of adequate fetal vitamin D stores.
    Matched MeSH terms: Sunlight*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links