MATERIALS AND METHODS: Seven healthy stags were chosen for semen collection using an electroejaculator. The collections were performed twice in a breeding season between February and June 2016. Samples were collected between 2 and 3 weeks interval, collected twice for each animal. Semen was evaluated, extended, and cryopreserved using four different extenders; Andromed®, BioXcell®, Triladyl®, and a modified Tris-egg yolk combined with Eurycoma longifolia Jack.
RESULTS: R. timorensis semen characteristics according to volume (ml), color, sperm concentration (106/ml), general motility (%), progressive motility (%), and % morphology of normal spermatozoa are 0.86±0.18 ml, thin milky to milky, 1194.2±346.1 106/ml, 82.9±2.8%, 76.1±4.8%, and 83.9±4.8%, respectively.
CONCLUSION: Semen characteristics of R. timorensis collected by electroejaculation is good allowing for cryopreservation and future artificial insemination work. The most suitable extender for Rusa deer semen is Andromed®.
MATERIALS AND METHODS: We identified differentially expressed mitochondrial proteins in 50 infertile men with varicocele and in 10 fertile controls by secondary liquid chromatography-tandem mass spectroscopy data driven in silico analysis. Identified proteins were validated by Western blot and immunofluorescence. Seminal oxidation-reduction potential was measured.
RESULTS: We identified 22 differentially expressed proteins related to mitochondrial structure (LETM1, EFHC, MIC60, PGAM5, ISOC2 and import TOM22) and function (NDFSU1, UQCRC2 and COX5B, and the core enzymes of carbohydrate and lipid metabolism). Cluster analysis and 3-dimensional principal component analysis revealed a significant difference between the groups. All proteins studied were under expressed in infertile men with varicocele. Liquid chromatography-tandem mass spectroscopy data were corroborated by Western blot and immunofluorescence. Impaired mitochondrial function was associated with decreased expression of the proteins (ATPase1A4, HSPA2, SPA17 and APOA1) responsible for proper sperm function, concomitant with elevated seminal oxidation-reduction potential in the semen of infertile patients with varicocele.
CONCLUSIONS: Impaired mitochondrial structure and function in varicocele may lead to oxidative stress, reduced ATP synthesis and sperm dysfunction. Mitochondrial differentially expressed proteins should be explored for the development of biomarkers as a predictor of infertility in patients with varicocele. Antioxidant therapy targeting sperm mitochondria may help improve the fertility status of these patients.
OBJECTIVE: To determine the most suitable antioxidant for the cryopreservation of the depik fish spermatozoa.
MATERIALS AND METHODS: A completely randomized design with a non-factorial experiment was used and the tested antioxidants were glutathione, beta-carotene, ascorbic acid, and butylated hydroxytoluene (BHT) at 6 % concentrations. All treatments had three replications. The sperms were collected from 10 male fishes and diluted with Ringer solution in a ratio of 1: 20 (v/v, sperm: Ringer solution). Then 5% DMSO and 5 % egg yolk were added to the diluted sperms. Furthermore, 6 % of the tested antioxidants were added to the diluents, and then, cryopreservation was carried out in liquid nitrogen for 14 days.
RESULTS: The ANOVA test showed that the application of antioxidants significantly affected the sperm motility, fertility, and hatching rates of the eggs (P < 0.05). Furthermore, the antioxidants also protected the sperm cells during cryopreservation, with glutathione being the best antioxidant.
CONCLUSION: The application of antioxidants during the cryopreservation of depik fish sperm had a significant effect on motility, fertility and hatchability of eggs post-cryo. Furthermore, glutathione was the most suitable antioxidant. doi.org/10.54680/fr23110110312.
OBJECTIVE: To determine the most suitable antioxidant for the cryopreservation of the depik fish spermatozoa.
MATERIALS AND METHODS: A completely randomized design with a non-factorial experiment was used and the tested antioxidants were glutathione, beta-carotene, ascorbic acid, and butylated hydroxytoluene (BHT) at 6 % concentrations. All treatments had three replications. The sperms were collected from 10 male fishes and diluted with Ringer solution in a ratio of 1: 20 (v/v, sperm: Ringer solution). Then 5% DMSO and 5 % egg yolk were added to the diluted sperms. Furthermore, 6 % of the tested antioxidants were added to the diluents, and then, cryopreservation was carried out in liquid nitrogen for 14 days.
RESULTS: The ANOVA test showed that the application of antioxidants significantly affected the sperm motility, fertility, and hatching rates of the eggs (P < 0.05). Furthermore, the antioxidants also protected the sperm cells during cryopreservation, with glutathione being the best antioxidant.
CONCLUSION: The application of antioxidants during the cryopreservation of depik fish sperm had a significant effect on motility, fertility and hatchability of eggs post-cryo. Furthermore, glutathione was the most suitable antioxidant. doi.org/10.54680/fr23110110312.
OBJECTIVE: To determine the most suitable type of cryoprotectant and pre-freezing for the successful cryopreservation of goldfish sperm.
MATERIALS AND METHODS: A completely randomized design with two factors was utilized in this study. The first factor is the type of cryoprotectants, which included methanol, ethanol, ethylene glycol, glycerol, and DMSO. The second is pre-freezing times of 10, 20, 30, and 40 min at each of the pre-freezing temperatures of 4 degree C, -10 degree C, and -79 degree C, meaning that the total times for the ramping down of temperature were 30, 60, 90 and 120 min, respectively. The Ringer solution and 10% egg yolk were used as extender and extracellular cryoprotectant. The sperm was stored at -179 degree C for 7 days.
RESULTS: The ANOVA test showed that cryoprotectants and pre-freezing significantly affected the motility, viability, and fertility of goldfish sperm after freezing in liquid nitrogen for 7 days (P<0.05). Furthermore, 10% DMSO combined with 15% egg yolk with an pre-freezing time of 20 min can maintain sperm motility, viability, and fertility higher than other treatments, by 79%, 80%, and 33%, respectively. The agarose gel electrophoresis showed no DNA fragmentation in all samples, including fresh sperm.
CONCLUSION: We conclude that 10% DMSO combined with 15% egg yolk and 20 min pre-freezing is the best treatment for goldfish sperm cryopreservation. DOI: 10.54680/fr23310110412.
AIM OF THE STUDY: To investigate the ability of CB to ameliorate H2O2-induced oxidative stress in testes and sperm in mice and prevent H2O2-induced oxidative in human sperm.
MATERIALS AND METHODS: Oxidative stress was induced in male mice by pre-exposure to 2% H2O2 orally for seven consecutive days, followed by 100 and 200 mg/kg b. w. administration. CB for another seven days. At the end of treatment, mice were sacrificed and testes and epididymal sperm were harvested. Serum FSH, LH and testosterone levels were measured and sperm parameters were obtained. Meanwhile, oxidative stress levels in mice testes and sperm, steroidogenesis and spermatogenesis markers in mice testes were assessed by molecular biological techniques. In another experiment, sperm from thirty-two healthy fertile men were incubated with 200 μM H2O2 and CB (100 and 200 μg/ml) simultaneously and were then evaluated for sperm parameter changes.
RESULTS: In mice, CB administration ameliorates persistent increases in oxidative stress and decreases in anti-oxidative enzyme levels in testes and sperm following H2O2 pre-exposure. Additionally, CB also helps to ameliorate deterioration in sperm parameters and testicular steroidogenesis and spermatogenesis and restores the serum FSH, LH and testosterone levels near normal in mice. In humans, CB helps to prevent deterioration in sperm parameters following H2O2 exposure.
CONCLUSION: CB is potentially useful to preserve the male reproductive capability and subsequently male fertility in high oxidative stress conditions.
Methods: Forty-eight male Sprague Dawley rats were allocated into eight groups of six rats (n = 6): control, CP only (200 mg kg-1), AM only (100 mg kg-1, 300 mg kg-1 and 500 mg kg-1) and CP + AM (100 mg kg-1, 300 mg kg-1 and 500 mg kg-1). Animals were sacrificed after 63 days of treatment and the sperm from the caudal epididymis was taken for sperm analysis.
Results: The body and the reproductive organs weight, sperm count and motility did not differ between CP and other groups (P > 0.05). A significant increase (P < 0.05) in percentage of the dead and abnormal sperm were seen in the CP alone treated group compared to the control group. Co-administration of AM to the CP exposed rats significantly reduced the (P < 0.05) percentage of abnormal sperm as compared to the CP only group.
Conclusion: Overall, the present results represent the potential of AM to protect against CP induced reproductive toxicity.