Displaying publications 81 - 100 of 122 in total

Abstract:
Sort:
  1. Lim SJ, Mustapha WAW, Maskat MY, Latip J, Badri KH, Hassan O
    Food Sci Biotechnol, 2016;25(Suppl 1):23-29.
    PMID: 30263482 DOI: 10.1007/s10068-016-0094-7
    Fucoidan is a sulfated polysaccharide that consists mainly of fucose and is found in brown seaweeds. In this study, fucoidan was extracted from Sargassum binderi (Fsar) from Malaysia and subsequently characterized in terms of composition, structure and toxicology. It was found that the molecular weight, polydispersity index, monosaccharide profile and degree of sulfation of Fsar differed from those of commercial food-grade fucoidan (Fysk). NMR analysis suggested that the main structure of Fsar was →3)fuc-2-OSO3-(1→3)fuc-2-OSO3-(1→. A cytotoxicity study employing up to 200 mg/mL Sargassum binderi extract showed that cell inhibition was less than 50% (IC50), while acute toxicity results classified S. binderi as category 5 (unclassified) according to the OECD Guideline 423, as no mortality was observed at the highest dosage (2,000 mg/kg). Both toxicity results showed that this material is safe to be consumed. The chemical characteristics and non-toxicity of Fsar demonstrate its potential in biological and food product applications.
    Matched MeSH terms: Seaweed
  2. Lim EL, Siow RS, Abdul Rahim R, Ho CL
    Mar Biotechnol (NY), 2016 Apr;18(2):189-200.
    PMID: 26631182 DOI: 10.1007/s10126-015-9680-6
    Many bacterial epiphytes of agar-producing seaweeds secrete agarase that degrade algal cell wall matrix into oligoagars which elicit defense-related responses in the hosts. The molecular defense responses of red seaweeds are largely unknown. In this study, we surveyed the defense-related transcripts of an agarophyte, Gracilaria changii, treated with β-agarase through next generation sequencing (NGS). We also compared the defense responses of seaweed elicited by agarase with those elicited by an agarolytic bacterium isolated from seaweed, by profiling the expression of defense-related genes using quantitative reverse transcription real-time PCR (qRT-PCR). NGS detected a total of 391 differentially expressed genes (DEGs) with a higher abundance (>2-fold change with a p value <0.001) in the agarase-treated transcriptome compared to that of the non-treated G. changii. Among these DEGs were genes related to signaling, bromoperoxidation, heme peroxidation, production of aromatic amino acids, chorismate, and jasmonic acid. On the other hand, the genes encoding a superoxide-generating NADPH oxidase and related to photosynthesis were downregulated. The expression of these DEGs was further corroborated by qRT-PCR results which showed more than 90 % accuracy. A comprehensive analysis of their gene expression profiles between 1 and 24 h post treatments (hpt) revealed that most of the genes analyzed were consistently upregulated or downregulated by both agarase and agarolytic bacterial treatments, indicating that the defense responses induced by both treatments are highly similar except for genes encoding vanadium bromoperoxidase and animal heme peroxidase. Our study has provided the first glimpse of the molecular defense responses of G. changii to agarase and agarolytic bacterial treatments.
    Matched MeSH terms: Seaweed
  3. Pin LC, Teen LP, Ahmad A, Usup G
    Mar Biotechnol (NY), 2001 May;3(3):246-55.
    PMID: 14961362
    The genus Ostreopsis is an important component of benthic and epiphytic dinoflagellate assemblages in coral reefs and seaweed beds of Malaysia. Members of the species may produce toxins that contribute to ciguatera fish poisoning. In this study, two species have been isolated and cultured, Ostreopsis ovata and Ostreopsis lenticularis. Analyses of the 5.8S subunit and internal transcribed spacer regions ITS1 and ITS2 of the ribosomal RNA gene sequences of these two species showed that they are separate species, consistent with morphological designations. The nucleotide sequences of the 5.8S subunit and ITS1 and ITS2 regions of the rRNA gene were also used to evaluate the interpopulation and intrapopulation genetic diversity of O. ovata found in Malaysian waters. Results showed a low level of sequence divergence within populations. At the interpopulation level, the rRNA gene sequence distinguished two groups of genetically distinct strains, representative of a Malacca Straits group (isolates from Port Dickson) and a South China Sea group (isolates from Pulau Redang and Kota Kinabalu). Part of the sequences in the ITS regions may be useful in the design of oligonucleotide probes specific for each group. Results from this study show that the ITS regions can be used as genetic markers for taxonomic, biogeographic, and fine-scale population studies of this species.
    Matched MeSH terms: Seaweed
  4. Isa HM, Kamal AH, Idris MH, Rosli Z, Ismail J
    Trop Life Sci Res, 2017 Jan;28(1):1-21.
    PMID: 28228913 MyJurnal DOI: 10.21315/tlsr2017.28.1.1
    Mangroves support diverse macroalgal assemblages as epibionts on their roots and tree trunks. These algae provide nutrients to the primary consumers in the aquatic food web and have been reported to be substantial contributors to marine ecosystems. The species diversity, biomass, and habitat characteristics of mangrove macroalgae were investigated at three stations in the Sibuti mangrove estuary, Sarawak, Malaysia, from November 2012 to October 2013. Three groups of macroalgae were recorded and were found to be growing on mangrove prop roots, namely Rhodophyta (Caloglossa ogasawaraensis, Caloglossa adhaerens, Caloglossa stipitata, Bostrychia anomala, and Hypnea sp.), Chlorophyta (Chaetomorpha minima and Chaetomorpha sp.), and Phaeophyta (Dictyota sp.). The biomass of macroalgae was not influenced (p>0.05) by the season in this mangrove forest habitat. The macroalgal species Hypnea sp. contributed the highest biomass at both Station 1 (210.56 mg/cm(2)) and Station 2 (141.72 mg/cm(2)), while the highest biomass was contributed by B. anomala (185.89 mg/cm(2)) at Station 3. This study shows that the species distribution and assemblages of mangrove macroalgae were influenced by environmental parameters such as water nutrients, dissolved solids, and salinity in the estuarine mangrove habitats of Sibuti, Sarawak.
    Matched MeSH terms: Seaweed
  5. Pirian K, Jeliani ZZ, Arman M, Sohrabipour J, Yousefzadi M
    Trop Life Sci Res, 2020 Apr;31(1):1-17.
    PMID: 32963708 DOI: 10.21315/tlsr2020.31.1.1
    Nowadays the exploration and utilisation of food and feed from marine origin is becoming more important with the increase of human population. Macroalgae are rich in nutritious compounds, which can directly be used in human and animal feed industries. The current study presents the screening of chemical components of eight macroalgae species, Sargassum boveanum, Sirophysalis trinodis, Hypnea caroides, Palisda perforata, Galaxaura rugosa, Caulerpa racemose, Caulerpa sertularioides and Bryopsis corticolans from the Persian Gulf. The results revealed that the eight studied algal species possess high protein (14.46% to 38.20%), lipid (1.27% to 9.13%) and ash (15.50% to 49.14%) contents. The fatty acids and amino acids profile showed the presence of essential fatty acids and amino acids with high nutritional value. Phaeophyta species, S. boveanum and S. trinodis, showed the highest value of ash content and polyunsaturated fatty acids while Chlorophyta species, C. racemose, C. sertularioides and B. corticolans, showed the highest level of lipid and protein contents. Rhodophyta species, G. rugosa and P. perforata, showed the highest essential amino acid content. In conclusion, this study demonstrates the potential of the studied marine species as a nutritional source for human and animal uses.
    Matched MeSH terms: Seaweed
  6. Siddique, M.A.M., Khan, M.S.K., Bhuiyan, M.K.A.
    MyJurnal
    Nutritional fact study has prime importance to make the species edible and commercially viable to the food consumers. The proximate chemical composition and amino acid profile of Gelidium pusillum were studied to understand the nutritional status. The red seaweed Gelidium pusillum was rich in dietary fibre (24.74 ± 1.05%), lipid (2.16 ± 0.61%) and ash content (21.15 ± 0.74%). The mean protein content (11.31 ± 1.02% DW) was within the range of 10-47% for green and red seaweeds and this range was higher than Gracilaria cornea (5.47% DW), Gracilaria changgi (6.90% DW) and Eucheuma cottonii (9.76% DW). Gelidium pusillum was found to contained all the essential amino acids, which accounted for 52.08% of the total amino acids. Tyrosine (26.2 mg g-1 protein), methionine (15.8 mg g-1 protein) and Lysine (48.3 mg g-1 protein) were the limiting amino acid of Gelidium pusillum. However, the levels of other essential amino acids were above the FAO/WHO requirement pattern (EAA score ranged from 1.14 to 1.62). Aspartic and glutamic acids constituted a substantial amount of the total amino acids (24.68% of total amino acid). The result from this study suggested that Gelidium pusillum could be utilized as a healthy food item for human consumption.
    Matched MeSH terms: Seaweed
  7. Lee WK, Namasivayam P, Ong Abdullah J, Ho CL
    Sci Rep, 2017 04 24;7:46563.
    PMID: 28436444 DOI: 10.1038/srep46563
    Seaweeds survive in marine waters with high sulfate concentration compared to those living at freshwater habitats. The cell wall polymer of Gracilaria spp. which supplies more than 50% of the world agar is heavily sulfated. Since sulfation reduces the agar quality, it is interesting to investigate the effects of sulfate deprivation on the sulfate contents of seaweed and agar, as well as the metabolic pathways of these seaweeds. In this study, two agarophytes G. changii and G. salicornia were treated under sulfate deprivation for 5 days. The sulfate contents in the seaweed/agar were generally lower in sulfate-deprivated samples compared to those in the controls, but the differences were only statistically significant for seaweed sample of G. changii and agar sample of G. salicornia. RNA sequencing (RNA-Seq) of sulfate-deprivated and untreated seaweed samples revealed 1,292 and 3,439 differentially expressed genes (DEGs; ≥1.5-fold) in sulfate-deprivated G. changii and G. salicornia, respectively, compared to their respective controls. Among the annotated DEGs were genes involved in putative agar biosynthesis, sulfur metabolism, metabolism of sulfur-containing amino acids, carbon metabolism and oxidative stress. These findings shed light on the sulfate deprivation responses in agarophytes and help to identify candidate genes involved in agar biosynthesis.
    Matched MeSH terms: Seaweed
  8. Azizi A, Mohd Hanafi N, Basiran MN, Teo CH
    3 Biotech, 2018 Aug;8(8):321.
    PMID: 30034985 DOI: 10.1007/s13205-018-1354-4
    Information on the abiotic stress tolerance and ice-ice disease resistance properties of tissue-cultured Kappaphycus alvarezii is scarce and can pose a big hurdle to a wider use of tissue-cultured seaweed in the industry. Here, we reported on a study of seaweed-associated bacteria diversity in farmed and tissue-cultured K. alvarezii, and ice-ice disease resistance and elevated growth temperature tolerance of tissue-cultured K. alvarezii in laboratory conditions. A total of 40 endophytic seaweed-associated bacteria strains were isolated from 4 types of K. alvarezii samples based on their colony morphologies, Gram staining properties and 16S rRNA gene sequences. Bacteria strains isolated were found to belong to Alteromonas sp., Aestuariibacter sp., Idiomarina sp., Jejuia sp., Halomonas sp., Primorskyibacter sp., Pseudoalteromonas sp., Ruegeria sp., Terasakiella sp., Thalassospira sp. and Vibrio sp. Vibrio alginolyticus strain ABI-TU15 isolated in this study showed agar-degrading property when analyzed using agar depression assay. Disease resistance assay was performed by infecting healthy K. alvarezii with 105 cells/mL Vibrio sp. ABI-TU15. Severe ice-ice disease symptoms were detected in farmed seaweeds compared to the tissue-cultured K. alvarezii. Besides disease resistance, tissue-cultured K. alvarezii showed better tolerance to the elevated growth temperatures of 30 and 35 °C. In conclusion, our overall data suggests that tissue-cultured K. alvarezii exhibited better growth performance than farmed seaweeds when exposed to elevated growth temperature and ice-ice disease-causing agent.
    Matched MeSH terms: Seaweed
  9. Mustapa NI, Yong HL, Lee LK, Lim ZF, Lim HC, Teng ST, et al.
    Harmful Algae, 2019 Nov;89:101671.
    PMID: 31672230 DOI: 10.1016/j.hal.2019.101671
    Species of the benthic dinoflagellate Gambierdiscus produce polyether neurotoxins that caused ciguatera fish/shellfish poisoning in human. The toxins enter marine food webs by foraging of herbivores on the biotic substrates like macroalgae that host the toxic dinoflagellates. Interaction of Gambierdiscus and their macroalgal substrate hosts is believed to shape the tendency of substrate preferences and habitat specialization. This was supported by studies that manifested epiphytic preferences and behaviors in Gambierdiscus species toward different macroalgal hosts. To further examine the supposition, a laboratory-based experimental study was conducted to examine the growth, epiphytic behaviors and host preferences of three Gambierdiscus species towards four macroalgal hosts over a culture period of 40 days. The dinoflagellates Gambierdiscus balechii, G. caribaeus, and a new ribotype, herein designated as Gambierdiscus type 7 were initially identified based on the thecal morphology and molecular characterization. Our results showed that Gambierdiscus species tested in this study exhibited higher growth rates in the presence of macroalgal hosts. Growth responses and attachment behaviors, however, differed among different species and strains of Gambierdiscus over different macroalgal substrate hosts. Cells of Gambierdiscus mostly attached to substrate hosts at the beginning of the experiments but detached at the later time. Localized Gambierdiscus-host interactions, as demonstrated in this study, could help to better inform efforts of sampling and monitoring of this benthic toxic dinoflagellate.
    Matched MeSH terms: Seaweed
  10. Brishti, F.H., Zarei, M., Muhammad, S.K.S., Ismail-Fitry, M.R., Shukri, R., Saari, N.
    MyJurnal
    Mung bean is considered a ‘green pearl’ for its relatively high protein content; however, it has limited application as a raw material for industrial food products. As the potential use of mung beans relies on its protein behavior, this study characterized the functional properties of mung bean protein isolates and the results were compared with soy protein isolates. The protein isolates were prepared from mung bean and soy bean flours via extraction with 1 N NaOH, precipitated at pH 4, and subsequently freeze-dried. The amino acid profile as well as the hydrophilic and hydrophobic ratio of mung bean protein isolate, had been comparable with soy protein isolate. The water and oil absorption capacities as well as the denaturation temperature of mung bean protein isolate, were found to be similar with those of soy bean protein isolate. However, foaming capacity (89.66%) of mung bean protein isolate was higher than that of soy protein isolate (68.66%). Besides, least gelation concentration (LGC) of mung bean protein isolate (12%) was also close to LGC of soy protein isolate (14%), while the protein solubility was comparable between both the isolated proteins. The physical features of the textured mung bean were close to the commercial textured soy protein, which showed a heterogeneous and porous network like matrix when the mung bean flour was extruded to measure its potentiality to produce textured vegetable protein.all seaweed extracts. Results showed that extraction parameters had significant effect (p < 0.05) on the antioxidant compounds and antioxidant capacities of seaweed. Sargassum polycystum portrayed the most antioxidant compounds (37.41 ± 0.01 mg GAE/g DW and 4.54 ± 0.02 mg CE/g DW) and capacities (2.00 ± 0.01 μmol TEAC/g DW and 0.84 ± 0.01 μmol TEAC/g DW) amongst four species of seaweed.
    Matched MeSH terms: Seaweed
  11. Gephart JA, Henriksson PJG, Parker RWR, Shepon A, Gorospe KD, Bergman K, et al.
    Nature, 2021 Sep;597(7876):360-365.
    PMID: 34526707 DOI: 10.1038/s41586-021-03889-2
    Fish and other aquatic foods (blue foods) present an opportunity for more sustainable diets1,2. Yet comprehensive comparison has been limited due to sparse inclusion of blue foods in environmental impact studies3,4 relative to the vast diversity of production5. Here we provide standardized estimates of greenhouse gas, nitrogen, phosphorus, freshwater and land stressors for species groups covering nearly three quarters of global production. We find that across all blue foods, farmed bivalves and seaweeds generate the lowest stressors. Capture fisheries predominantly generate greenhouse gas emissions, with small pelagic fishes generating lower emissions than all fed aquaculture, but flatfish and crustaceans generating the highest. Among farmed finfish and crustaceans, silver and bighead carps have the lowest greenhouse gas, nitrogen and phosphorus emissions, but highest water use, while farmed salmon and trout use the least land and water. Finally, we model intervention scenarios and find improving feed conversion ratios reduces stressors across all fed groups, increasing fish yield reduces land and water use by up to half, and optimizing gears reduces capture fishery emissions by more than half for some groups. Collectively, our analysis identifies high-performing blue foods, highlights opportunities to improve environmental performance, advances data-poor environmental assessments, and informs sustainable diets.
    Matched MeSH terms: Seaweed
  12. Ariffin SH, Yeen WW, Abidin IZ, Abdul Wahab RM, Ariffin ZZ, Senafi S
    PMID: 25519220 DOI: 10.1186/1472-6882-14-508
    Carrageenan is a linear sulphated polysaccharide extracted from red seaweed of the Rhodophyceae family. It has broad spectrum of applications in biomedical and biopharmaceutical field. In this study, we determined the cytotoxicity of degraded and undegraded carrageenan in human intestine (Caco-2; cancer and FHs 74 Int; normal) and liver (HepG2; cancer and Fa2N-4; normal) cell lines.
    Matched MeSH terms: Seaweed/chemistry
  13. Jaswir I, Monsur HA, Simsek S, Amid A, Alam Z, bin Salleh MN, et al.
    J Oleo Sci, 2014;63(8):787-94.
    PMID: 25007746
    Aqueous extracts obtained from five Malaysian brown seaweeds, Sargassum duplicatum, Sargassum binderi, Sargassum fulvellum, Padina australis, and Turbinaria turbinata, were investigated for their abilities to inhibit nitric oxide (NO) production in lipopolysaccharide (LPS)-induced macrophage RAW 264.7 cell lines as well as to determine their chemical composition. The percentage yield of extracts varied among species, with P. australis having the lowest yield and T. turbinata having the highest yield. The chemical compositions of the extracts showed that the percentage of sulfate ions as well as uronic acid and total sugar content varied significantly. All extracts contained high fucose and inhibited NO secretion in a dose-dependent manner. Extracts of P. australis and T. turbinata dosed at 200 μg/mL were able to inhibit NO secretion by > 75%. Furthermore, cytotoxicity assays revealed that some extracts were moderately toxic, while others were not. Based on these results, brown seaweed of Malaysian origin should be investigated for the production of additional anti-inflammatory compounds.
    Matched MeSH terms: Seaweed/chemistry*
  14. Furusawa G, Lau NS, Suganthi A, Amirul AA
    Microbiologyopen, 2017 02;6(1).
    PMID: 27987272 DOI: 10.1002/mbo3.405
    The agarolytic bacterium Persicobacter sp. CCB-QB2 was isolated from seaweed (genus Ulva) collected from a coastal area of Malaysia. Here, we report a high-quality draft genome sequence for QB2. The Rapid Annotation using Subsystem Technology (RAST) annotation server identified four β-agarases (PdAgaA, PdAgaB, PdAgaC, and PdAgaD) as well as galK, galE, and phosphoglucomutase, which are related to the Leloir pathway. Interestingly, QB2 exhibited a diauxic growth in the presence of two kinds of nutrients, such as tryptone and agar. In cells grown with agar, the profiles of agarase activity and growth rate were very similar. galK, galE, and phosphoglucomutase genes were highly expressed in the second growth phase of diauxic growth, indicating that QB2 cells use galactose hydrolyzed from agar by its agarases and exhibit nutrient prioritization. This is the first report describing diauxic growth for agarolytic bacteria. QB2 is a potential novel model organism for studying diauxic growth in environmental bacteria.
    Matched MeSH terms: Seaweed/microbiology
  15. Yew YP, Shameli K, Mohamad SEB, Nagao Y, Teow SY, Lee KX, et al.
    Int J Pharm, 2019 Dec 15;572:118743.
    PMID: 31705969 DOI: 10.1016/j.ijpharm.2019.118743
    Superparamagnetic magnetite nanocomposites (Fe3O4-NCs) were successfully synthesized, which comprised of montmorillonite (MMT) as matrix support, Kappaphycus alvarezii (SW) as bio-stabilizer and Fe3O4 as filler in the composites to form MMT/SW/Fe3O4-NCs. Nanocomposite with 0.5 g Fe3O4 (MMT/SW/0.5Fe3O4) was selected for anticancer activity study because it revealed high crystallinity, particle size of 7.2 ± 1.7 nm with majority of spherical shape, and Ms = 5.85 emu/g with negligible coercivity. Drug loading and release studies were carried out using protocatechuic acid (PCA) as the model for anticancer drug, which showed 19% and 87% of PCA release in pH 7.4 and 4.8, respectively. Monolayer anticancer assay showed that PCA-loaded MMT/SW/Fe3O4 (MMT/SW/Fe3O4-PCA) had selectivity towards HCT116 (colorectal cancer cell line). Although MMT/SW/Fe3O4-PCA (0.64 mg/mL) showed higher IC50 than PCA (0.148 mg/mL) and MMT/SW/Fe3O4 (0.306 mg/mL, MMT/SW/Fe3O4-PCA showed more effective killing towards tumour spheroid model generated from HCT116. The IC50 for MMT/SW/Fe3O4-PCA, MMT/SW/Fe3O4 and PCA were 0.132, 0.23 and 0.55 mg/mL, respectively. This suggests the improved penetration efficiency and drug release of MMT/SW/Fe3O4-PCA towards HCT116 spheroids. Moreover, concentration that lower than 2 mg/mL MMT/SW/Fe3O4-PCA did not result any hemolysis in human blood, which suggests them to be ideal for intravenous injection. This study highlights the potential of MMT/SW/Fe3O4-NCs as drug delivery agent.
    Matched MeSH terms: Seaweed/chemistry*
  16. Fathy SA, Mohamed MR, Emam MA, Mohamed SS, Ghareeb DA, Elgohary SA, et al.
    Trop Biomed, 2019 Dec 01;36(4):972-986.
    PMID: 33597467
    Candida is the most frequent common causes of invasive fungal infections and associated with high morbidity and mortality. Most of available antifungal agents have side effects. This opened up new avenues to investigate the antifungal efficacy of active extracts from marine algae. So the aim of this study was to evaluate the protective and the curative effect of Ulva fasciata extract against an invasive candidiasis in mice and to study its underlying mechanism. The active ingredients of Ulva fasciata extract were evaluated using HPLC and GC/MS. Fifty mice were included in current work, and the level of inflammatory markers; Interleukin (IL)-4, IL-12, Interferon-gamma (IFN-γ) and Tumor necrosis factor-alpha (TNF-α) were determined using ELISA kits. Hematological, biochemical and oxidative stress parameters were determined using commercial kits. Moreover, the histopathological examinations were carried on liver, kidney and spleen for all groups. The results obtained showed that treatment with U. fasciata either before or after Candida infection significantly improved the hematological, biochemical alterations and antioxidant status caused by this infection. Furthermore, the U. fasciata reduced histopathological changes induced by Candida as well as it could increase the expression of IL-12 and IFN-γ while minimized the expression of TNF-α and IL-4 in all infected mice compared to infected untreated mice. These data propose that U. fasciata can ameliorate inflammatory reactions related to Candida albicans cytotoxicity via its ability to augment cellular antioxidant defenses by its active compounds.
    Matched MeSH terms: Seaweed/chemistry
  17. Zaharudin N, Tullin M, Pekmez CT, Sloth JJ, Rasmussen RR, Dragsted LO
    Clin Nutr, 2021 Mar;40(3):830-838.
    PMID: 32917417 DOI: 10.1016/j.clnu.2020.08.027
    BACKGROUND & AIMS: Seaweed including brown seaweeds with rich bioactive components may be efficacious for a glycaemic management strategy and appetite control. We investigated the effects of two brown edible seaweeds, Laminaria digitata (LD) and Undaria pinnatifida (UP), on postprandial glucose metabolism and appetite following a starch load in a human meal study.

    METHODS: Twenty healthy subjects were enrolled in a randomized, 3-way, blinded cross-over trial. The study was registered under ClinicalTrials.gov Identifier no. NCT00123456. At each test day, the subjects received one of three meals comprising 30 g of starch with 5 g of LD or UP or an energy-adjusted control meal containing pea protein. Fasting and postprandial blood glucose, insulin, C-peptide and glucagon-like peptide-1 (GLP-1) concentrations were measured. Subjective appetite sensations were scored using visual analogue scales (VAS).

    RESULTS: Linear mixed model (LMM) analysis showed a lower blood glucose, insulin and C-peptide response following the intake of LD and UP, after correction for body weight. Participants weighing ≤ 63 kg had a reduced glucose response compared to control meal between 40 and 90 min both following LD and UP meals. Furthermore, LMM analysis for C-peptide showed a significantly lower response after intake of LD. Compared to the control meal, GLP-1 response was higher after the LD meal, both before and after the body weight adjustment. The VAS scores showed a decreased appetite sensation after intake of the seaweeds. Ad-libitum food intake was not different three hours after the seaweed meals compared to control.

    CONCLUSIONS: Concomitant ingestion of brown seaweeds may help improving postprandial glycaemic and appetite control in healthy and normal weight adults, depending on the dose per body weight.

    CLINICAL TRIAL REGISTRY NUMBER: Clinicaltrials.gov (ID# NCT02608372).

    Matched MeSH terms: Seaweed*
  18. Mohd Fauziee NA, Chang LS, Wan Mustapha WA, Md Nor AR, Lim SJ
    Int J Biol Macromol, 2021 Jan 15;167:1135-1145.
    PMID: 33188815 DOI: 10.1016/j.ijbiomac.2020.11.067
    Brown seaweeds are rich source of functional polysaccharides that exhibit various bioactivities. However, Malaysian seaweeds are under-utilised, leading to low revenue throughout the supply chain of the seaweed industry. The aims of this study were to extract the functional polysaccharides, namely fucoidan (F), laminaran (L) and alginate (A) from Malaysian brown seaweeds (Sargassum polycystum, Turbinaria ornata and Padina boryana) and subsequently evaluate the properties of the extracted polysaccharides. P. boryana recorded the significantly (p ≤ 0.05) highest carbohydrate content (74.78 ± 1.63%) with highest fucoidan yield (Fpad = 1.59 ± 0.16%) while T. ornata contained significantly (p ≤ 0.05) highest alginate yield (Atur = 105.19 ± 3.45%). Water activities of these extracted polysaccharides varied from 0.63-0.71 with average score of browning indexes (~40). Fourier transform infrared (FTIR) spectroscopy analysis demonstrated that the extracted polysaccharides exhibited similar spectral pattern of spectra with the respective standards. Meanwhile, laminaran extracts showed the significantly highest (p ≤ 0.05) total phenolic contents (Lsar = 43.29 ± 0.43 mgGAE/g) and superoxide anion scavenging activity (Lsig = 21.7 ± 3.6%). On the other hand, the significantly highest (p ≤ 0.05) DPPH scavenging activity was recorded in alginate with Asar at 85.3 ± 0.8%. These findings reported the properties and bioactivities of natural polysaccharides from Malaysian brown seaweeds that revealed the potential to develop high-value functional ingredients from Malaysian brown seaweeds.
    Matched MeSH terms: Seaweed/chemistry*
  19. Zaharudin N, Salmeán AA, Dragsted LO
    Food Chem, 2018 Apr 15;245:1196-1203.
    PMID: 29287342 DOI: 10.1016/j.foodchem.2017.11.027
    Edible seaweeds are valuable because of their organoleptic properties and complex polysaccharide content. A study was conducted to investigate the potential of dried edible seaweed extracts, its potential phenolic compounds and alginates for α-amylase inhibitory effects. The kinetics of inhibition was assessed in comparison with acarbose. The methanol extract of Laminaria digitata and the acetone extract of Undaria pinnatifida showed inhibitory activity against α-amylase, IC50 0.74 ± 0.02 mg/ml and 0.81 ± 0.03 mg/ml, respectively; both showed mixed-type inhibition. Phenolic compound, 2,5-dihydroxybenzoic acid was found to be a potent inhibitor of α-amylase with an IC50 value of 0.046 ± 0.004 mg/ml. Alginates found in brown seaweeds appeared to be potent inhibitors of α-amylase activity with an IC50 of (0.075 ± 0.010-0.103 ± 0.017) mg/ml, also a mixed-type inhibition. Overall, the findings provide information that crude extracts of brown edible seaweeds, phenolic compounds and alginates are potent α-amylase inhibitors, thereby potentially retarding glucose liberation from starches and alleviation of postprandial hyperglycaemia.
    Matched MeSH terms: Seaweed/chemistry*
  20. Namvar F, Rahman HS, Mohamad R, Baharara J, Mahdavi M, Amini E, et al.
    Int J Nanomedicine, 2014;9:2479-88.
    PMID: 24899805 DOI: 10.2147/IJN.S59661
    Magnetic iron oxide nanoparticles (Fe3O4 MNPs) are among the most useful metal nanoparticles for multiple applications across a broad spectrum in the biomedical field, including the diagnosis and treatment of cancer. In previous work, we synthesized and characterized Fe3O4 MNPs using a simple, rapid, safe, efficient, one-step green method involving reduction of ferric chloride solution using brown seaweed (Sargassum muticum) aqueous extract containing hydroxyl, carboxyl, and amino functional groups mainly relevant to polysaccharides, which acts as a potential stabilizer and metal reductant agent. The aim of this study was to evaluate the in vitro cytotoxic activity and cellular effects of these Fe3O4 MNPs. Their in vitro anticancer activity was demonstrated in human cell lines for leukemia (Jurkat cells), breast cancer (MCF-7 cells), cervical cancer (HeLa cells), and liver cancer (HepG2 cells). The cancer cells were treated with different concentrations of Fe3O4 MNPs, and an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was used to test for cytotoxicity, resulting in an inhibitory concentration 50 (IC50) value of 23.83±1.1 μg/mL (HepG2), 18.75±2.1 μg/mL (MCF-7), 12.5±1.7 μg/mL (HeLa), and 6.4±2.3 μg/mL (Jurkat) 72 hours after treatment. Therefore, Jurkat cells were selected for further investigation. The representative dot plots from flow cytometric analysis of apoptosis showed that the percentages of cells in early apoptosis and late apoptosis were increased. Cell cycle analysis showed a significant increase in accumulation of Fe3O4 MNP-treated cells at sub-G1 phase, confirming induction of apoptosis by Fe3O4 MNPs. The Fe3O4 MNPs also activated caspase-3 and caspase-9 in a time-response fashion. The nature of the biosynthesis and therapeutic potential of Fe3O4 MNPs could pave the way for further research on the green synthesis of therapeutic agents, particularly in nanomedicine, to assist in the treatment of cancer.
    Matched MeSH terms: Seaweed/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links