SUMMARY: This review assesses the accumulated evidences on the mutual influence of monoamines, hormones and neuropeptides that are linked to obesity. A few anti-obesity drugs that exert their mechanisms of action through monoamines are briefly discussed to support the notion of monoamines being a critical target of drug discovery for new anti-obesity drugs. Subsequently, the review provides a comprehensive overview of central dopamine and serotonin changes that are associated with the use of khat or its alkaloids. Then, all the studies on khat that describe physical, biochemical and hormonal changes are summarised and discussed in depth.
CONCLUSION: The reviewed studies provide relatively acceptable evidence that different khat extracts or cathinone produces changes in terms of weight, fat mass, appetite, lipid biochemistry and hormonal levels. These changes are more pronounced at higher doses and long durations of intervention. The most suggested mechanism of these changes is the central action that produces changes in the physiology of dopamine and serotonin. Nonetheless, there are a number of variations in the study design, including species, doses and durations of intervention, which makes it difficult to arrive at a final conclusion about khat regarding obesity, and further studies are necessary in the future to overcome these limitations.
METHODS: In this work, the biochemical potential of M. buxifolia (Falc.) A. DC was explored and linked with its biological activities. Methanol and chloroform extracts from leaves and stems were investigated for total phenolic and flavonoid contents. Ultrahigh-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) was used to determine secondary-metabolite composition, while high-performance liquid chromatography coupled with photodiode array detection (HPLC-PDA) was used for polyphenolic quantification. In addition, we carried out in vitro assays to determine antioxidant potential and the enzyme-inhibitory response of M. buxifolia extracts.
RESULTS: Phenolics (91 mg gallic-acid equivalent (GAE)/g) and flavonoids (48.86 mg quercetin equivalent (QE)/g) exhibited their highest concentration in the methanol extract of stems and the chloroform extract of leaves, respectively. UHPLC-MS analysis identified a number of important phytochemicals, belonging to the flavonoid, phenolic, alkaloid, and terpenoid classes of secondary metabolites. The methanol extract of leaves contained a diosgenin derivative and polygalacin D, while kaempferol and robinin were most abundant in the chloroform extract. The methanol extract of stems contained a greater peak area for diosgenin and kaempferol, whereas this was true for lucidumol A and 3-O-cis-coumaroyl maslinic acid in the chloroform extract. Rutin, epicatechin, and catechin were the main phenolics identified by HPLC-PDA analysis. The methanol extract of stems exhibited significant 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical-scavenging activities (145.18 and 279.04 mmol Trolox equivalent (TE)/g, respectively). The maximum cupric reducing antioxidant capacity (CUPRAC) (361.4 mg TE/g), ferric-reducing antioxidant power (FRAP) (247.19 mg TE/g), and total antioxidant potential (2.75 mmol TE/g) were depicted by the methanol extract of stems. The methanol extract of leaves exhibited stronger inhibition against acetylcholinesterase (AChE) and glucosidase, while the chloroform extract of stems was most active against butyrylcholinesterase (BChE) (4.27 mg galantamine equivalent (GALAE)/g). Similarly, the highest tyrosinase (140 mg kojic-acid equivalent (KAE)/g) and amylase (0.67 mmol acarbose equivalent (ACAE)/g) inhibition was observed for the methanol extract of stems.
CONCLUSIONS: UHPLC-MS analysis and HPLC-PDA quantification identified a number of bioactive secondary metabolites of M. buxifolia, which may be responsible for its antioxidant potential and enzyme-inhibitory response. M. buxifolia can be further explored for the isolation of its active components to be used as a drug.