Displaying publications 81 - 100 of 1023 in total

Abstract:
Sort:
  1. Balakrishnan DD, Kumar SG
    Parasit Vectors, 2014;7:219.
    PMID: 24886677 DOI: 10.1186/1756-3305-7-219
    Biochemical evidence of a caspase-like execution pathway has been demonstrated in a variety of protozoan parasites, including Blastocystis spp. The distinct differences in the phenotypic characterization reported previously have prompted us to compare the rate of apoptosis in Blastocystis spp. isolated from individuals who were symptomatic and asymptomatic. In the current study, we analysed the caspase activation involved in PCD mediated by a cytotoxic drug, (metronidazole) in both symptomatic & asymptomatic isolates.
    Matched MeSH terms: Gene Expression Regulation, Enzymologic/physiology
  2. Jaligot E, Hooi WY, Debladis E, Richaud F, Beulé T, Collin M, et al.
    PLoS One, 2014;9(3):e91896.
    PMID: 24638102 DOI: 10.1371/journal.pone.0091896
    The mantled floral phenotype of oil palm (Elaeis guineensis) affects somatic embryogenesis-derived individuals and is morphologically similar to mutants defective in the B-class MADS-box genes. This somaclonal variation has been previously demonstrated to be associated to a significant deficit in genome-wide DNA methylation. In order to elucidate the possible role of DNA methylation in the transcriptional regulation of EgDEF1, the APETALA3 ortholog of oil palm, we studied this epigenetic mark within the gene in parallel with transcript accumulation in both normal and mantled developing inflorescences. We also examined the methylation and expression of two neighboring retrotransposons that might interfere with EgDEF1 regulation. We show that the EgDEF1 gene is essentially unmethylated and that its methylation pattern does not change with the floral phenotype whereas expression is dramatically different, ruling out a direct implication of DNA methylation in the regulation of this gene. Also, we find that both the gypsy element inserted within an intron of the EgDEF1 gene and the copia element located upstream from the promoter are heavily methylated and show little or no expression. Interestingly, we identify a shorter, alternative transcript produced by EgDEF1 and characterize its accumulation with respect to its full-length counterpart. We demonstrate that, depending on the floral phenotype, the respective proportions of these two transcripts change differently during inflorescence development. We discuss the possible phenotypical consequences of this alternative splicing and the new questions it raises in the search for the molecular mechanisms underlying the mantled phenotype in the oil palm.
    Matched MeSH terms: Gene Expression Regulation, Plant*
  3. Abdul Rahman A, Abdul Karim N, Abdul Hamid NA, Harun R, Ngah WZ
    Oxid Med Cell Longev, 2013;2013:189129.
    PMID: 24381713 DOI: 10.1155/2013/189129
    Mechanisms determining both functional rate of decline and the time of onset in aging remain elusive. Studies of the aging process especially those involving the comparison of long-lived individuals and young controls are fairly limited. Therefore, this research aims to determine the differential gene expression profile in related individuals from villages in Pahang, Malaysia. Genome-wide microarray analysis of 18 samples of peripheral blood mononuclear cells (PBMCs) from two groups: octo/nonagenarians (80-99 years old) and their offspring (50.2 ± 4.0 years old) revealed that 477 transcripts were age-induced and 335 transcripts were age-repressed with fold changes ≥1.2 in octo/nonagenarians compared to offspring. Interestingly, changes in gene expression were associated with increased capacity for apoptosis (BAK1), cell cycle regulation (CDKN1B), metabolic process (LRPAP1), insulin action (IGF2R), and increased immune and inflammatory response (IL27RA), whereas response to stress (HSPA8), damage stimulus (XRCC6), and chromatin remodelling (TINF2) pathways were downregulated in octo/nonagenarians. These results suggested that systemic telomere maintenance, metabolism, cell signalling, and redox regulation may be important for individuals to maintain their healthy state with advancing age and that these processes play an important role in the determination of the healthy life-span.
    Matched MeSH terms: Gene Expression Regulation*
  4. Nezhadahmadi A, Prodhan ZH, Faruq G
    ScientificWorldJournal, 2013;2013:610721.
    PMID: 24319376 DOI: 10.1155/2013/610721
    Drought is one of the most important phenomena which limit crops' production and yield. Crops demonstrate various morphological, physiological, biochemical, and molecular responses to tackle drought stress. Plants' vegetative and reproductive stages are intensively influenced by drought stress. Drought tolerance is a complicated trait which is controlled by polygenes and their expressions are influenced by various environmental elements. This means that breeding for this trait is so difficult and new molecular methods such as molecular markers, quantitative trait loci (QTL) mapping strategies, and expression patterns of genes should be applied to produce drought tolerant genotypes. In wheat, there are several genes which are responsible for drought stress tolerance and produce different types of enzymes and proteins for instance, late embryogenesis abundant (lea), responsive to abscisic acid (Rab), rubisco, helicase, proline, glutathione-S-transferase (GST), and carbohydrates during drought stress. This review paper has concentrated on the study of water limitation and its effects on morphological, physiological, biochemical, and molecular responses of wheat with the possible losses caused by drought stress.
    Matched MeSH terms: Gene Expression Regulation, Plant/physiology*
  5. Kasim S, Deris S, Othman RM
    Comput Biol Med, 2013 Sep;43(9):1120-33.
    PMID: 23930805 DOI: 10.1016/j.compbiomed.2013.05.011
    A drastic improvement in the analysis of gene expression has lead to new discoveries in bioinformatics research. In order to analyse the gene expression data, fuzzy clustering algorithms are widely used. However, the resulting analyses from these specific types of algorithms may lead to confusion in hypotheses with regard to the suggestion of dominant function for genes of interest. Besides that, the current fuzzy clustering algorithms do not conduct a thorough analysis of genes with low membership values. Therefore, we present a novel computational framework called the "multi-stage filtering-Clustering Functional Annotation" (msf-CluFA) for clustering gene expression data. The framework consists of four components: fuzzy c-means clustering (msf-CluFA-0), achieving dominant cluster (msf-CluFA-1), improving confidence level (msf-CluFA-2) and combination of msf-CluFA-0, msf-CluFA-1 and msf-CluFA-2 (msf-CluFA-3). By employing double filtering in msf-CluFA-1 and apriori algorithms in msf-CluFA-2, our new framework is capable of determining the dominant clusters and improving the confidence level of genes with lower membership values by means of which the unknown genes can be predicted.
    Matched MeSH terms: Gene Expression Regulation, Fungal/physiology*
  6. Kumarasamy V, Kuppusamy UR, Samudi C, Kumar S
    Parasitol Res, 2013 Oct;112(10):3551-5.
    PMID: 23933809 DOI: 10.1007/s00436-013-3538-5
    Blastocystis sp. is a commonly found intestinal microorganism and was reported to cause many nonspecific gastrointestinal symptoms. Various subtypes have been previously reported, and the pathogenicity of different subtypes of Blastocystis is unclear and remains as a controversial issue. A recent study has shown that the Blastocystis antigen isolated from an unknown subtype could facilitate the proliferation of colon cancer cells. Current study was conducted to compare the effect of solubilized antigen isolated from five different subtypes of Blastocystis on colon cancer cells, HCT116. A statistically significant proliferation of these cells was observed when exposed to 1.0 μg/ml solubilized antigen isolated from subtype 3 Blastocystis (37.22%, p < 0.05). Real-time polymerase chain reaction demonstrated the upregulation of Th2 cytokines especially transforming growth factor beta in subtype 3-treated cancer cells (p < 0.01, 3.71-fold difference). Of interest, subtype 3 Blastocystis antigen also caused a significantly higher upregulation of cathepsin B (subtypes 1 and 2, p < 0.01; subtypes 4 and 5, p < 0.001; 6.71-fold difference) which lead to the postulation that it may enhance the exacerbation of existing colon cancer cells by weakening the cellular immune response. The dysregulation of IFN-γ and p53 expression also suggest Blastocystis as a proponent of carcinogenesis. Therefore, it is very likely for subtype 3 Blastocystis to have higher pathogenic potential as it caused an increased propagation of cancer cells and substantial amount of inflammatory reaction compared to other subtypes.
    Matched MeSH terms: Gene Expression Regulation/physiology
  7. Hoe CH, Raabe CA, Rozhdestvensky TS, Tang TH
    Int J Med Microbiol, 2013 Jul;303(5):217-29.
    PMID: 23660175 DOI: 10.1016/j.ijmm.2013.04.002
    Bacteria are often exposed to a hostile environment and have developed a plethora of cellular processes in order to survive. A burgeoning list of small non-coding RNAs (sRNAs) has been identified and reported to orchestrate crucial stress responses in bacteria. Among them, cis-encoded sRNA, trans-encoded sRNA, and 5'-untranslated regions (UTRs) of the protein coding sequence are influential in the bacterial response to environmental cues, such as fluctuation of temperature and pH as well as other stress conditions. This review summarizes the role of bacterial sRNAs in modulating selected stress conditions and highlights the alliance between stress response and clustered regularly interspaced short palindromic repeats (CRISPR) in bacterial defense.
    Matched MeSH terms: Gene Expression Regulation, Bacterial*
  8. Gholami K, Muniandy S, Salleh N
    Biomed Res Int, 2013;2013:840121.
    PMID: 23509787 DOI: 10.1155/2013/840121
    Precise uterine fluid pH regulation may involve the Na(+)/H(+)-exchanger (NHE). We hypothesized that NHE isoforms are differentially expressed under different sex steroid treatment and at different oestrous cycle phases which may explain the uterine fluid pH changes observed under these conditions.
    Matched MeSH terms: Gene Expression Regulation*
  9. Yahaya B, McLachlan G, McCorquodale C, Collie D
    PLoS One, 2013;8(4):e58930.
    PMID: 23593124 DOI: 10.1371/journal.pone.0058930
    BACKGROUND: Understanding the way in which the airway heals in response to injury is fundamental to dissecting the mechanisms underlying airway disease pathology. As only limited data is available in relation to the in vivo characterisation of the molecular features of repair in the airway we sought to characterise the dynamic changes in gene expression that are associated with the early response to physical injury in the airway wall.

    METHODOLOGY/PRINCIPAL FINDINGS: We profiled gene expression changes in the airway wall using a large animal model of physical injury comprising bronchial brush biopsy in anaesthetised sheep. The experimental design featured sequential studies in the same animals over the course of a week and yielded data relating to the response at 6 hours, and 1, 3 and 7 days after injury. Notable features of the transcriptional response included the early and sustained preponderance of down-regulated genes associated with angiogenesis and immune cell activation, selection and differentiation. Later features of the response included the up-regulation of cell cycle genes at d1 and d3, and the latter pronounced up-regulation of extracellular matrix-related genes at d3 and d7.

    CONCLUSIONS/SIGNIFICANCE: It is possible to follow the airway wall response to physical injury in the same animal over the course of time. Transcriptional changes featured coordinate expression of functionally related genes in a reproducible manner both within and between animals. This characterisation will provide a foundation against which to assess the perturbations that accompany airway disease pathologies of comparative relevance.

    Matched MeSH terms: Gene Expression Regulation*
  10. Zaatar AM, Lim CR, Bong CW, Lee MM, Ooi JJ, Suria D, et al.
    J Exp Clin Cancer Res, 2012 Sep 17;31:76.
    PMID: 22986368 DOI: 10.1186/1756-9966-31-76
    BACKGROUND: Treatment protocols for nasopharyngeal carcinoma (NPC) developed in the past decade have significantly improved patient survival. In most NPC patients, however, the disease is diagnosed at late stages, and for some patients treatment response is less than optimal. This investigation has two aims: to identify a blood-based gene-expression signature that differentiates NPC from other medical conditions and from controls and to identify a biomarker signature that correlates with NPC treatment response.

    METHODS: RNA was isolated from peripheral whole blood samples (2 x 10 ml) collected from NPC patients/controls (EDTA vacutainer). Gene expression patterns from 99 samples (66 NPC; 33 controls) were assessed using the Affymetrix array. We also collected expression data from 447 patients with other cancers (201 patients) and non-cancer conditions (246 patients). Multivariate logistic regression analysis was used to obtain biomarker signatures differentiating NPC samples from controls and other diseases. Differences were also analysed within a subset (n=28) of a pre-intervention case cohort of patients whom we followed post-treatment.

    RESULTS: A blood-based gene expression signature composed of three genes - LDLRAP1, PHF20, and LUC7L3 - is able to differentiate NPC from various other diseases and from unaffected controls with significant accuracy (area under the receiver operating characteristic curve of over 0.90). By subdividing our NPC cohort according to the degree of patient response to treatment we have been able to identify a blood gene signature that may be able to guide the selection of treatment.

    CONCLUSION: We have identified a blood-based gene signature that accurately distinguished NPC patients from controls and from patients with other diseases. The genes in the signature, LDLRAP1, PHF20, and LUC7L3, are known to be involved in carcinoma of the head and neck, tumour-associated antigens, and/or cellular signalling. We have also identified blood-based biomarkers that are (potentially) able to predict those patients who are more likely to respond to treatment for NPC. These findings have significant clinical implications for optimizing NPC therapy.

    Matched MeSH terms: Gene Expression Regulation, Neoplastic*
  11. Seet WT, Manira M, Maarof M, Khairul Anuar K, Chua KH, Ahmad Irfan AW, et al.
    PLoS One, 2012;7(8):e40978.
    PMID: 22927903 DOI: 10.1371/journal.pone.0040978
    Skin plays an important role in defense against infection and other harmful biological agents. Due to its fragile structure, skin can be easily damaged by heat, chemicals, traumatic injuries and diseases. An autologous bilayered human skin equivalent, MyDerm™, was engineered to provide a living skin substitute to treat critical skin loss. However, one of the disadvantages of living skin substitute is its short shelf-life, hence limiting its distribution worldwide. The aim of this study was to evaluate the shelf-life of MyDerm™ through assessment of cell morphology, cell viability, population doubling time and functional gene expression levels before transplantation. Skin samples were digested with 0.6% Collagenase Type I followed by epithelial cells dissociation with TrypLE Select. Dermal fibroblasts and keratinocytes were culture-expanded to obtain sufficient cells for MyDerm™ construction. MyDerm™ was constructed with plasma-fibrin as temporary biomaterial and evaluated at 0, 24, 48 and 72 hours after storage at 4°C for its shelf-life determination. The morphology of skin cells derived from MyDerm™ remained unchanged across storage times. Cells harvested from MyDerm™ after storage appeared in good viability (90.5%±2.7% to 94.9%±1.6%) and had short population doubling time (58.4±8.7 to 76.9±19 hours). The modest drop in cell viability and increased in population doubling time at longer storage duration did not demonstrate a significant difference. Gene expression for CK10, CK14 and COL III were also comparable between different storage times. In conclusion, MyDerm™ can be stored in basal medium at 4°C for at least 72 hours before transplantation without compromising its functionality.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  12. Islam MR, Abdullah JM, Atoji Y
    Anat Histol Embryol, 2013 Aug;42(4):257-65.
    PMID: 22994540 DOI: 10.1111/ahe.12009
    Bioassay and immunohistochemical studies have detected the presence of prosaposin in the central nervous system (CNS) of mammals. Here, first time, we have determined the partial cDNA sequence of pigeon prosaposin and mapped the distribution of its mRNA in the pigeon CNS. The predicted amino acid sequence of pigeon prosaposin showed 93 and 60% identity to chicken and human prosaposin, respectively. In situ hybridization, autoradiograms showed that the prosaposin mRNA expression was found in the olfactory bulb, prepiriform cortex, Wulst, mesopallium, nidopallium, hippocampal formation, thalamus, tuberis nucleus, pre-tectal nucleus, nucleus mesencephalicus lateralis, pars dorsalis, nucleus isthmi, pars parvocellularis and magnocellularis, Edinger-Westphal nucleus, optic tectum, cerebellar cortex and nuclei, vestibular nuclei and gray matter of the spinal cord. These results suggest that the cDNA sequence of pigeon prosaposin is comparable to other vertebrates, and the general distribution pattern of prosaposin mRNA resembles those are found in mammals.
    Matched MeSH terms: Gene Expression Regulation/physiology*
  13. Teh CS, Chua KH, Thong KL
    Infect Genet Evol, 2011 Jul;11(5):1121-8.
    PMID: 21511055 DOI: 10.1016/j.meegid.2011.04.005
    This paper describes the development and application of multilocus sequencing typing (MLST) and multi-virulence locus sequencing typing (MVLST) methods in determining the genetic variation and relatedness of 43 Vibrio cholerae strains of different serogroups isolated from various sources in Malaysia. The MLST assay used six housekeeping genes (dnaE, lap, recA, gyrB, cat and gmd), while the MVLST assay incorporated three virulence genes (ctxAB, tcpA and tcpI) and three virulence-associated genes (hlyA, toxR and rtxA). Our data showed that the dnaE and rtxA genes were the most conserved genes in V. cholerae O1 strains. Among the 12 studied genes, transitional substitutions that led to silent mutations were observed in all, except for gmd and hlyA, while non-synonymous substitutions occurred more frequently in virulence and virulence-associated genes. Five V. cholerae O1 strains were found to be the El Tor variant O1 strains because they harboured the classical ctxB gene. In addition, the classical ctxB gene was also observed in O139 V. cholerae. A total of 29 MLST types were observed, and this assay could differentiate V. cholerae within the non-O1/non-O139 serogroups. A total of 27 MVLST types were obtained. MVLST appeared to be more discriminatory than MLST because it could differentiate V. cholerae strains from two different outbreaks and could separate the toxigenic from the non-toxigenic subtypes. Although the O1 V. cholerae strains were closely related, the combined MLST and MVLST analyses differentiated the strains isolated from different localities. In conclusion, sequence-based analysis in this study provided a better understanding of mutation points and the type of mutations in V. cholerae. The MVLST assay is useful to characterise O1 V. cholerae strains, while combined analysis may improve the discriminatory power and is suitable for the local epidemiological study of V. cholerae.
    Matched MeSH terms: Gene Expression Regulation, Bacterial/physiology
  14. Kazi JA
    Neurol Sci, 2012 Dec;33(6):1233-7.
    PMID: 22240716 DOI: 10.1007/s10072-012-0933-0
    Nocistatin and nociceptin/orphanin FQ (N/OFQ) are two neuropeptides which may have opposite effects in several biological functions but their neuro-anatomical sites of interaction are not fully clear. We investigated interaction between the effect of intracerebroventricular (i.c.v.) injection of nocistatin and N/OFQ, on c-Fos expression in the mouse thalamus, using c-Fos immunohistochemistry. We found that co-injection of nocistatin with N/OFQ significantly modulates c-Fos expression in the thalamus. The present study strongly suggests that "Nocistatin-Nociceptin" interaction system in the thalamus may be the promising neuromodulatory sites in the investigation of unlocking their possible therapeutic circuit in nociception, memory and anxiety.
    Matched MeSH terms: Gene Expression Regulation*
  15. Chee JY, Lau NS, Samian MR, Tsuge T, Sudesh K
    J Appl Microbiol, 2012 Jan;112(1):45-54.
    PMID: 22054430 DOI: 10.1111/j.1365-2672.2011.05189.x
    Burkholderia sp. USM (JCM15050) isolated from oil-polluted wastewater is capable of utilizing palm oil products and glycerol to synthesize poly(3-hydroxybutyrate) [P(3HB)]. To confer the ability to produce polymer containing 3-hydroxyhexanoate (3HHx), plasmid (pBBREE32d13) harbouring the polyhydroxyalkanoate (PHA) synthase gene of Aeromonas caviae (phaC(Ac)) was transformed into this strain.
    Matched MeSH terms: Gene Expression Regulation, Bacterial*
  16. Gan HM, Ibrahim Z, Shahir S, Yahya A
    FEMS Microbiol Lett, 2011 May;318(2):108-14.
    PMID: 21323982 DOI: 10.1111/j.1574-6968.2011.02245.x
    Genes involved in the 4-aminobenzenesulfonate (4-ABS) degradation pathway of Hydrogenophaga sp. PBC were identified using transposon mutagenesis. The screening of 10,000 mutants for incomplete 4-ABS biotransformation identified four mutants with single transposon insertion. Genes with insertions that impaired the ability to utilize 4-ABS for growth included (1) 4-sulfocatechol 1,2-dioxygenase β-subunit (pcaH2) and 3-sulfomuconate cycloisomerase involved in the modified β-ketoadipate pathway; (2) 4-aminobenzenesulfonate 3,4-dioxygenase component (sadA) involved in aromatic ring hydroxylation; and (3) transposase gene homolog with a putative cis-diol dehydrogenase gene located downstream. The pcaH2 mutant strain accumulated brown metabolite during growth on 4-ABS which was identified as 4-sulfocatechol through thin layer chromatography and HPLC analyses. Supplementation of wild-type sadA gene in trans restored the 4-ABS degradation ability of the sadA mutant, thus supporting the annotation of its disrupted gene.
    Matched MeSH terms: Gene Expression Regulation, Bacterial*
  17. Mohammed MA, Galbraith SE, Radford AD, Dove W, Takasaki T, Kurane I, et al.
    Infect Genet Evol, 2011 Jul;11(5):855-62.
    PMID: 21352956 DOI: 10.1016/j.meegid.2011.01.020
    Japanese encephalitis virus (JEV) is the most important cause of epidemic encephalitis worldwide but its origin is unknown. Epidemics of encephalitis suggestive of Japanese encephalitis (JE) were described in Japan from the 1870s onwards. Four genotypes of JEV have been characterised and representatives of each genotype have been fully sequenced. Based on limited information, a single isolate from Malaysia is thought to represent a putative fifth genotype. We have determined the complete nucleotide and amino acid sequence of Muar strain and compared it with other fully sequenced JEV genomes. Muar was the least similar, with nucleotide divergence ranging from 20.2 to 21.2% and amino acid divergence ranging from 8.5 to 9.9%. Phylogenetic analysis of Muar strain revealed that it does represent a distinct fifth genotype of JEV. We elucidated Muar signature amino acids in the envelope (E) protein, including E327 Glu on the exposed lateral surface of the putative receptor binding domain which distinguishes Muar strain from the other four genotypes. Evolutionary analysis of full-length JEV genomes revealed that the mean evolutionary rate is 4.35 × 10(-4) (3.4906 × 10(-4) to 5.303 × 10(-4)) nucleotides substitutions per site per year and suggests JEV originated from its ancestral virus in the mid 1500s in the Indonesia-Malaysia region and evolved there into different genotypes, which then spread across Asia. No strong evidence for positive selection was found between JEV strains of the five genotypes and the E gene has generally been subjected to strong purifying selection.
    Matched MeSH terms: Gene Expression Regulation, Viral/physiology
  18. Gokulshankar S, Ranjitsingh A, Venkatesan G, Ranjith MS, Vijayalakshmi GS, Prabhamanju M, et al.
    Indian J Pathol Microbiol, 2010 Jan-Mar;53(1):87-92.
    PMID: 20090230 DOI: 10.4103/0377-4929.59191
    The protease activity of different isolates of dermatophytes representing different ecological groups namely geophilic, zoopahilic and anthropophilic, in their vegetative and sporulation growth phases were compared. Unlike their geophilic and zoophilic counterparts, all the isolates of anthropophilic dermatophytes viz. Trichophyton rubrum, T. mentagrophytes, T. tonsurans, T. violaceum and Epidermophyton floccosum recorded reduced protease activity during artificially induced sporulation phase in comparison to their vegetative growth phase. Even among the anthropophilic group, a classical moderation of protease activity was recorded in Trichyphyton rubrum which also correlates to its clinical manifestation. This enzyme moderation could also be an evolutionary adaptation of the anthropization of these species.
    Matched MeSH terms: Gene Expression Regulation, Fungal*
  19. Sim EU, Ang CH, Ng CC, Lee CW, Narayanan K
    J Hum Genet, 2010 Feb;55(2):118-20.
    PMID: 19927161 DOI: 10.1038/jhg.2009.124
    Extraribosomal functions of human ribosomal proteins (RPs) include the regulation of cellular growth and differentiation, and are inferred from studies that linked congenital disorders and cancer to the deregulated expression of RP genes. We have previously shown the upregulation and downregulation of RP genes in tumors of colorectal and nasopharyngeal carcinomas (NPCs), respectively. Herein, we show that a subset of RP genes for the large ribosomal subunit is differentially expressed among cell lines derived from the human nasopharyngeal epithelium. Three such genes (RPL27, RPL37a and RPL41) were found to be significantly downregulated in all cell lines derived from NPC tissues compared with a nonmalignant nasopharyngeal epithelial cell line. The expression of RPL37a and RPL41 genes in human nasopharyngeal tissues has not been reported previously. Our findings support earlier suspicions on the existence of NPC-associated RP genes, and indicate their importance in human nasopharyngeal organogenesis.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic/genetics*
  20. Aliza D, Ismail IS, Kuah MK, Shu-Chien AC, Tengku Muhammad TS
    Fish Physiol Biochem, 2008 Jun;34(2):129-38.
    PMID: 18649030 DOI: 10.1007/s10695-007-9153-6
    Copper is one of the major heavy metal pollutants found in the aquatic environment. Therefore, it is important for determining the genes that play a key role in copper metabolism in aquatic organisms. This study, thus, aimed to identify a new copper-inducible gene in swordtail fish, Xiphophorus helleri. Using ACP-based RT-PCR coupled with RLM-RACE, we cloned Wap65, a mammalian homologue of hemopexin gene. The gene exhibits high identity at amino acid levels with the Wap65 gene of other fish species (42-68%) and mammalian hemopexin gene (35-37%). In addition, ten cysteine and two histidine residues are conserved in the swordtail fish Wap65 gene. These cysteine residues are vital for structural integrity, and histidine residues provide high binding affinity towards heme. As revealed by RT-PCR, the gene was upregulated in swordtail fish that were exposed to copper in a dose- and time-dependent manner. Therefore, the identification of Wap65, a mammalian homologue of hemopexin, as a new copper-inducible gene will provide greater insight into the role of this gene in copper metabolism.
    Matched MeSH terms: Gene Expression Regulation/drug effects*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links