Displaying publications 81 - 100 of 134 in total

Abstract:
Sort:
  1. Yusof MI, Al-Astani AD, Jaafar H, Rashid FA
    Singapore Med J, 2008 Feb;49(2):100-4.
    PMID: 18301834
    INTRODUCTION: This study was designed to evaluate the histopathological features of skin microvasculature in patients with a diabetic foot, specifically the number of blood vessels, number of endothelial cells and endothelial thickness.
    METHODS: This study involved 41 diabetic foot patients admitted to Hospital Universiti Sains Malaysia for surgical management of foot problems. Skin biopsies were taken for histological evaluation following surgical procedures, such as wound debridement or local foot amputation. The skin microvasculature features examined were the number of blood vessels, the endothelial thickness of the vessels and the cross-sectional endothelial cell count. The findings were compared with the similar parameters of non-diabetic patients (control) and analysed.
    RESULTS: The mean blood vessel count (BVC), endothelial cell thickness (ECT) and endothelial cell count (ECC) for the diabetic group were 12.56 +/- 2.77, 4.81 +/- 1.5 micrometres and 7.07 +/- 1.88, respectively. The mean BVC, ECT and ECC for the non-diabetic control group were 5.25 +/- 1.98, 1.9 +/- 0.55 micrometres and 4.11 +/- 1.17, respectively. The mean BVC, ECT and ECC for the diabetic group were significantly higher than those for the non-diabetic control group.
    CONCLUSION: The increased number of blood vessels to the skin and their endothelial cell number and thickness may be the contributing factors for problems related to the diabetic foot, such as tendency for skin ulceration, infection and poor wound-healing in these patients. These may also contribute to secondary changes of diabetic foot lesions, indicating failure of adequate vascularisation of the foot.
    Matched MeSH terms: Endothelium, Vascular/pathology*
  2. Wan Ahmad WN, Sakri F, Mokhsin A, Rahman T, Mohd Nasir N, Abdul-Razak S, et al.
    PLoS One, 2015;10(1):e0116867.
    PMID: 25614985 DOI: 10.1371/journal.pone.0116867
    BACKGROUND: Inflammation, endothelial activation and oxidative stress have been established as key events in the initiation and progression of atherosclerosis. High-density lipoprotein cholesterol (HDL-c) is protective against atherosclerosis and coronary heart disease, but its association with inflammation, endothelial activation and oxidative stress is not well established.

    OBJECTIVES: (1) To compare the concentrations of biomarkers of inflammation, endothelial activation and oxidative stress in subjects with low HDL-c compared to normal HDL-c; (2) To examine the association and correlation between HDL-c and these biomarkers and (3) To determine whether HDL-c is an independent predictor of these biomarkers.

    METHODS: 422 subjects (mean age±SD = 43.2±11.9 years) of whom 207 had low HDL-c concentrations (HDL-c <1.0 mmol/L and <1.3 mmol/L for males and females respectively) and 215 normal controls (HDL-c ≥1.0 and ≥1.3 mmol/L for males and females respectively) were recruited in this study. The groups were matched for age, gender, ethnicity, smoking status, diabetes mellitus and hypertension. Fasting blood samples were collected for analysis of biomarkers of inflammation [high-sensitivity C-reactive protein (hsCRP) and Interleukin-6 (IL-6)], endothelial activation [soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1), soluble Intercellular Adhesion Molecule-1 (sICAM-1) and E-selectin)] and oxidative stress [F2-Isoprostanes, oxidized Low Density Lipoprotein (ox-LDL) and Malondialdehyde (MDA)].

    RESULTS: Subjects with low HDL-c had greater concentrations of inflammation, endothelial activation and oxidative stress biomarkers compared to controls. There were negative correlations between HDL-c concentration and biomarkers of inflammation (IL-6, p = 0.02), endothelial activation (sVCAM-1 and E-selectin, p = 0.029 and 0.002, respectively), and oxidative stress (MDA and F2-isoprostane, p = 0.036 and <0.0001, respectively). Multiple linear regression analysis showed HDL-c as an independent predictor of IL-6 (p = 0.02) and sVCAM-1 (p<0.03) after correcting for various confounding factors.

    CONCLUSION: Low serum HDL-c concentration is strongly correlated with enhanced status of inflammation, endothelial activation and oxidative stress. It is also an independent predictor for enhanced inflammation and endothelial activation, which are pivotal in the pathogenesis of atherosclerosis and atherosclerosis-related complications.

    Matched MeSH terms: Endothelium, Vascular/metabolism*
  3. Murugan D, Lau YS, Lau CW, Lau WC, Mustafa MR, Huang Y
    PLoS One, 2015;10(12):e0145413.
    PMID: 26709511 DOI: 10.1371/journal.pone.0145413
    Angiotensin 1-7 (Ang 1-7) counter-regulates the cardiovascular actions of angiotensin II (Ang II). The present study investigated the protective effect of Ang 1-7 against Ang II-induced endoplasmic reticulum (ER) stress and endothelial dysfunction. Ex vivo treatment with Ang II (0.5 μM, 24 hours) impaired endothelium-dependent relaxation in mouse aortas; this harmful effect of Ang II was reversed by co-treatment with ER stress inhibitors, l4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) as well as Ang 1-7. The Mas receptor antagonist, A779, antagonized the effect of Ang 1-7. The elevated mRNA expression of CHOP, Grp78 and ATF4 or protein expression of p-eIF2α and ATF6 (ER stress markers) in Ang II-treated human umbilical vein endothelial cells (HUVECs) and mouse aortas were blunted by co-treatment with Ang 1-7 and the latter effect was reversed by A779. Furthermore, Ang II-induced reduction in both eNOS phosphorylation and NO production was inhibited by Ang 1-7. In addition, Ang 1-7 decreased the levels of ER stress markers and augmented NO production in HUVECs treated with ER stress inducer, tunicamycin. The present study provides new evidence for functional antagonism between the two arms of the renin-angiotensin system in endothelial cells by demonstrating that Ang 1-7 ameliorates Ang II-stimulated ER stress to raise NO bioavailability, and subsequently preserves endothelial function.
    Matched MeSH terms: Endothelium/drug effects; Endothelium/metabolism
  4. Jaafar H, Abdullah S, Murtey MD, Idris FM
    Asian Pac J Cancer Prev, 2012;13(8):3857-62.
    PMID: 23098483
    A total of 96 cases of invasive breast ductal carcinoma were examined for immunohistochemical expression of Bax and Bcl-2 in the epithelial tumor cells and endothelial cells of the blood vessels. We also investigated the association between both proteins in the epithelium in relation to tumor characteristics such as tumor size, grade, lymph node involvement, microvessel density (MVD), hormonal receptors expression and c-erbB-2 overexpression. Bax expression showed a significant association between tumor and endothelial cells (p<0.001) while Bcl-2 expression in tumor cells was inversely associated with that in the endothelial cells (p<0.001). Expression of Bcl-2 in tumor cells was strongly associated with expression of estrogen and progesterone receptors (p=0.003 and p=0.004, respectively). In addition, intratumoral MVD was significantly higher than peritumoral MVD (p<0.001) but not associated with Bax or Bcl-2 expression and other tumor characteristics. We concluded that the number of endothelial cells undergoing apoptosis was in direct linkage with the number of apoptotic tumor cells. Anti-apoptotic activity of the surviving tumor cells appears to propagate cancer progression and this was influenced by the hormonal status of the cells. Tumor angiogenesis was especially promoted in the intratumoral region and angiogenesis was independent of anti-apoptotic activity.
    Matched MeSH terms: Endothelium, Vascular/metabolism*; Endothelium, Vascular/pathology
  5. Subramaniam G, Achike FI, Mustafa MR
    Regul. Pept., 2009 Jun 5;155(1-3):70-5.
    PMID: 19362578 DOI: 10.1016/j.regpep.2009.04.008
    The effect of acidosis on insulin-induced relaxation was studied in thoracic aortic rings (from Wistar-Kyoto (WKY) rats) with (+ED) or without (-ED) endothelium. The rings were mounted in normal (pH 7.4) or acidotic (pH 7.2) Krebs solution for isometric tension recording. Phenylephrine (PE, 3.0 microM)-contracted tissues were exposed to insulin in the presence or absence of various inhibitors. Insulin exerted similar concentration-dependent relaxation of +ED tissues in normal and acidotic pH. Endothelium denudation, significantly (p<0.05) reduced insulin effect in normal, but not acidotic pH. Under normal pH, treatment with L-NAME or methylene blue significantly (p<0.05) reduced insulin responses in the +ED (but not the -ED) tissues. The insulin effect was also significantly (p<0.05) inhibited by tetraethylammonium (TEA; BK(Ca) blocker), 4-Aminopyridine (4-AP; K(V) channel blocker), combined treatments (L-NAME+4-AP+TEA, in +ED tissues) or (4-AP+TEA, in -ED tissues). In either +ED or -ED tissues, indomethacin (cyclo-oxygenase inhibitor), glibenclamide (K(ATP) channel blocker), barium chloride (K(ir) channel blocker) or Ouabain (a Na(+)/K(+)-ATPase inhibitor) had no effect. Except for methylene blue (effect on +ED tissues), none of the drug treatments inhibited insulin vasodilator effect in acidosis (+ED or -ED tissues). These data indicate that insulin exerts an endothelium-dependent and -independent vasodilatation in rat aorta which in normal pH is mediated via BK(Ca) and K(v) channels, including the EDNO-cGMP cascade. Acidosis abolishes the endothelium-dependent relaxation mechanism unraveling a novel mechanism that is as efficacious and is cGMP-, but not EDNO-, BK(Ca)- or K(v)-mediated.
    Matched MeSH terms: Endothelium, Vascular/drug effects; Endothelium, Vascular/metabolism
  6. Ameer OZ, Salman IM, Siddiqui MJ, Yam MF, Sriramaneni RN, Mohamed AJ, et al.
    J Ethnopharmacol, 2010 Jan 8;127(1):19-25.
    PMID: 19808083 DOI: 10.1016/j.jep.2009.09.057
    The present study was aimed to investigate the pharmacological basis for the use of Loranthus ferrugineus in hypertension.
    Matched MeSH terms: Endothelium, Vascular/drug effects; Endothelium, Vascular/physiology
  7. Amudha K, Choy AM, Mustafa MR, Lang CC
    Cardiovasc Ther, 2008;26(4):253-61.
    PMID: 19035876 DOI: 10.1111/j.1755-5922.2008.00064.x
    Endothelial function is impaired in healthy subjects at risk of type 2 diabetes mellitus (DM). We investigated whether endothelial dysfunction can be normalized by statin therapy in this potentially predisposed population. Flow-mediated dilation (FMD) was measured in 56 first-degree relatives (FDRs) (normotensive, normal glucose tolerance) and 20 age-, sex-, and BMI-matched controls with no family history of DM. Other measurements included insulin resistance index using the homeostasis model of insulin resistance (HOMA(IR)), plasma lipids, and markers of inflammation. The FDRs were then randomized and treated with atorvastatin (80 mg) or placebo daily in a 4-week double-blind, placebo-controlled trial. The FDRs had significantly impaired FMD (4.4 +/- 8.1% vs. 13.0 +/- 4.2%; P < 0.001), higher HOMA(IR) (1.72 +/- 1.45 vs. 1.25 +/- 0.43; P = 0.002), and elevated levels of plasma markers of inflammation-highly sensitive C-reactive protein (hsCRP) (2.6 +/- 3.8 mg/L vs. 0.7 +/- 1.0 mg/L; P = 0.06), interleukin (IL)-6 (0.07 +/- 0.13 ng/mL vs. 0.03 +/- 0.01 ng/mL; P < 0.001), and soluble intercellular adhesion molecule (sICAM) (267.7 +/- 30.7 ng/mL vs. 238.2 +/- 20.4 ng/mL; P < 0.001). FMD improved in the atorvastatin-treated subjects when compared with the placebo-treated subjects (atorvastatin, from 3.7 +/- 8.5% to 9.8 +/- 7.3%; placebo, from 3.9 +/- 5.6% to 4.7 +/- 4.2%; P = 0.001). There were also reductions in the levels of IL-6 (0.08 +/- 0.02 ng/mL vs. 0.04 +/- 0.01 ng/mL; P < 0.001) and hsCRP (3.0 +/- 3.9 mg/L vs. 1.0 +/- 1.3 mg/L; P = 0.006). Our study suggests that treatment with atorvastatin may improve endothelial function and decrease levels of inflammatory markers in FDRs of type 2 DM patients.
    Matched MeSH terms: Endothelium, Vascular/drug effects*; Endothelium, Vascular/metabolism
  8. Mokhtar SS, Vanhoutte PM, Leung SW, Suppian R, Yusof MI, Rasool AH
    Eur J Pharmacol, 2016 Feb 15;773:78-84.
    PMID: 26825543 DOI: 10.1016/j.ejphar.2016.01.013
    Diabetes is associated with endothelial dysfunction, which is characterized by impaired endothelium-dependent relaxations. The present study aimed to examine the role of nitric oxide (NO), prostacyclin and endothelium-dependent hyperpolarization (EDH), in the relaxation of ventral tail arteries of rats under diabetic conditions. Relaxations of tail arteries of control and diabetic rats were studied in wire myograph. Western blotting and immunostaining were used to determine the presence of proteins. Acetylcholine-induced relaxations were significantly smaller in arteries of diabetic compared to control rats (Rmax; 70.81 ± 2.48% versus 85.05 ± 3.15%). Incubation with the combination of non-selective cyclooxygenase (COX) inhibitor, indomethacin and potassium channel blockers, TRAM 34 and UCL 1684, demonstrated that NO-mediated relaxation was attenuated significantly in diabetic compared to control rats (Rmax; 48.47 ± 5.84% versus 68.39 ± 6.34%). EDH-type (in the presence of indomethacin and NO synthase inhibitor, LNAME) and prostacyclin-mediated (in the presence of LNAME plus TRAM 34 and UCL 1684) relaxations were not significantly reduced in arteries of diabetic compared to control rats [Rmax: (EDH; 17.81 ± 6.74% versus 34.16 ± 4.59%) (prostacyclin; 15.85 ± 3.27% versus 17.23 ± 3.75%)]. Endothelium-independent relaxations to sodium nitroprusside, salbutamol and prostacyclin were comparable in the two types of preparations. Western blotting and immunostaining indicated that diabetes diminished the expression of endothelial NO synthase (eNOS), while increasing those of COX-1 and COX-2. Thus, since acetylcholine-induced NO-mediated relaxation was impaired in diabetes because of reduced eNOS protein expression, pharmacological intervention improving NO bioavailability could be useful in the management of diabetic endothelial dysfunction.
    Matched MeSH terms: Endothelium, Vascular/drug effects; Endothelium, Vascular/metabolism
  9. Lau YS, Ling WC, Murugan D, Kwan CY, Mustafa MR
    Nutrients, 2015 Jul;7(7):5239-53.
    PMID: 26133970 DOI: 10.3390/nu7075220
    Botanical herbs are consumed globally not only as an essential diet but also as medicines or as functional/recreational food supplements. The extract of the Apocynum venetum leaves (AVLE), also known as Luobuma, exerts its antihypertensive effect via dilating the blood vessels in an endothelium- and concentration-dependent manner with optimal effect seen at as low as 10 µg/mL. A commercial Luoboma "antihypertensive tea" is available commercially in the western province of China. The present study seeks to investigate the underlying cellular mechanisms of the nitric oxide (NO)-releasing property of AVLE in rat aortas and human umbilical vein endothelial cells (HUVECs). Endothelium-dependent relaxation induced by AVLE was assessed in organ chambers in the presence or absence of polyethyleneglycol catalase (PP2, 20 µM; inhibitor of Src kinase), wortmannin (30 nM) and LY294002 (20 µM; PI3 (phosphatidylinositol3)-Kinase inhibitor), N(G)-nitro-L-arginine (L-NAME, 100 µM; endothelial NO synthase inhibitor (eNOS)) and ODQ (1 µM; soluble guanylyl cyclase inhibitor). Total nitrite and nitrate (NOx) level and protein expression of p-Akt and p-eNOS were measured. AVLE-induced endothelium-dependent relaxation was reduced by PP2, wortmannin and LY294002 and abolished by L-NAME and ODQ. AVLE significantly increased total NOx level in rat aortas and in HUVECs compared to control. It also instigated phosphorylation of Akt and eNOS in cultured HUVECs in a concentration-dependent manner and this was markedly suppressed by PP2, wortmannin and LY294002. AVLE also inhibited superoxide generated from both NADPH oxidase and xanthine/xanthine oxidase system. Taken together, AVLE causes endothelium-dependent NO mediated relaxations of rat aortas through Src/PI3K/Akt dependent NO signalling pathway and possesses superoxide scavenging activity.
    Matched MeSH terms: Endothelium, Vascular/drug effects*; Endothelium, Vascular/physiology
  10. Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A, Lam SK, et al.
    Science, 2000 May 26;288(5470):1432-5.
    PMID: 10827955
    A paramyxovirus virus termed Nipah virus has been identified as the etiologic agent of an outbreak of severe encephalitis in people with close contact exposure to pigs in Malaysia and Singapore. The outbreak was first noted in late September 1998 and by mid-June 1999, more than 265 encephalitis cases, including 105 deaths, had been reported in Malaysia, and 11 cases of encephalitis or respiratory illness with one death had been reported in Singapore. Electron microscopic, serologic, and genetic studies indicate that this virus belongs to the family Paramyxoviridae and is most closely related to the recently discovered Hendra virus. We suggest that these two viruses are representative of a new genus within the family Paramyxoviridae. Like Hendra virus, Nipah virus is unusual among the paramyxoviruses in its ability to infect and cause potentially fatal disease in a number of host species, including humans.
    Matched MeSH terms: Endothelium, Vascular/pathology; Endothelium, Vascular/virology
  11. Rahman T, Hamzan NS, Mokhsin A, Rahmat R, Ibrahim ZO, Razali R, et al.
    Lipids Health Dis, 2017 Apr 24;16(1):81.
    PMID: 28438163 DOI: 10.1186/s12944-017-0470-1
    BACKGROUND: Familial hypercholesterolaemia (FH) leads to premature coronary artery diseases (CAD) which pathophysiologically can be measured by inflammation, endothelial activation and oxidative stress status. However, the status of these biomarkers among related unaffected relatives of FH cases and whether FH is an independent predictor of these biomarkers have not been well established. Thus, this study aims to (1) compare the biomarkers of inflammation, endothelial activation and oxidative stress between patients with FH, their related unaffected relatives (RUC) and normolipaemic subjects (NC) (2)determine whether FH is an independent predictor of these biomarkers.

    METHODS: One hundred thirty-one FH patients, 68 RUC and 214 matched NC were recruited. Fasting lipid profile, biomarkers of inflammation (hsCRP), endothelial activation (sICAM-1 and E-selectin) and oxidative stress [oxidized LDL (oxLDL), malondialdehyde (MDA) and F2-isoprostanes (ISP)] were analyzed and independent predictor was determined using binary logistic regression analysis.

    RESULTS: hsCRP was higher in FH and RUC compared to NC (mean ± SD = 1.53 ± 1.24 mg/L and mean ± SD = 2.54 ± 2.30 vs 1.10 ± 0.89 mg/L, p  0.05). FH was an independent predictor for sICAM-1 (p = 0.007), ox-LDL (p 

    Matched MeSH terms: Endothelium, Vascular/metabolism*; Endothelium, Vascular/physiopathology
  12. Rahman NA, Sharudin A, Diah S, Muharram SH
    Microb Pathog, 2017 Sep;110:352-358.
    PMID: 28711510 DOI: 10.1016/j.micpath.2017.07.021
    INTRODUCTION: Pneumococcal infections have caused morbidity and mortality globally. Streptococcus pneumoniae (pneumococci) are commensal bacteria that colonize the nasopharynx, asymptomatically. From there, pneumococci can spread in the lungs causing pneumonia and disseminate in the bloodstream causing bacteremia (sepsis) and reach the brain leading to meningitis. Endothelial cells are one of the most important components of the blood-brain barrier that separates the blood from the brain and plays the first protective role against pneumococcal entry. Thus this study aimed to investigate on the ability of non-meningitis pneumococcal clinical strains to adhere and invade a brain endothelium model.

    METHODS: Two pneumococcal Brunei clinical strains were serotyped by multiplex PCR method using oligonucleotide sequences derived from Centers for Disease Control and Prevention. A validated immortalised mouse brain endothelial cell line (bEnd.3) was used as a brain endothelium model for the study of the pneumococcal breach of the blood-brain barrier using an adherence and invasion assay.

    RESULTS: Both of the pneumococcal clinical strains were found to be serotype 19F, a common circulating serotype in Southeast Asia and globally and possess the ability to adhere and invade the brain endothelial cells.

    CONCLUSION: In addition, this is the first report on the serotype identification of pneumococci in Brunei Darussalam and their application on a brain endothelium model. Further studies are required to understand the virulence capabilities of the clinical strains.

    Matched MeSH terms: Endothelium, Vascular/metabolism; Endothelium, Vascular/microbiology*
  13. Si LY, Kamisah Y, Ramalingam A, Lim YC, Budin SB, Zainalabidin S
    Appl Physiol Nutr Metab, 2017 Jul;42(7):765-772.
    PMID: 28249121 DOI: 10.1139/apnm-2016-0506
    Vascular endothelial dysfunction (VED) plays an important role in the initiation of cardiovascular diseases. Roselle, enriched with antioxidants, demonstrates high potential in alleviating hypertension. This study was undertaken to investigate the effects of roselle supplementation of VED and remodelling in a rodent model with prolonged nicotine administration. Male Sprague-Dawley rats (n = 6 per group) were administered with 0.6 mg/kg nicotine for 28 days to induce VED. The rats were given either aqueous roselle (100 mg/kg) or normal saline orally 30 min prior to nicotine injection daily. One additional group of rats served as control. Thoracic aorta was isolated from rats to measure vascular reactivity, vascular remodelling and oxidative stress. Roselle significantly lowered aortic sensitivity to phenylephrine-induced vasoconstriction (Endo-(+) Cmax = 234.5 ± 3.9%, Endo-(-) Cmax = 247.6 ± 5.2%) compared with untreated nicotine group (Endo-(+) Cmax = 264.5 ± 6.9%, Endo-(-) Cmax = 276.5 ± 6.8%). Roselle also improved aortic response to endothelium-dependent vasodilator, acetylcholine (Endo-(+) Rmax = 73.2 ± 2.1%, Endo-(-) Rmax = 26.2 ± 0.8%) compared to nicotine group (Endo-(+) Rmax = 57.8 ± 1.7%, Endo-(-) Rmax = 20.9 ± 0.8%). In addition, roselle prevented an increase in intimal media thickness and elastic lamellae proliferation to preserve vascular architecture. Moreover, we also observed a significantly lowered degree of oxidative stress in parallel with increased antioxidant enzymes in aortic tissues of the roselle-treated group. This study demonstrated that roselle prevents VED and remodelling, and as such it has high nutraceutical value as supplement to prevent cardiovascular diseases.
    Matched MeSH terms: Endothelium, Vascular/drug effects*; Endothelium, Vascular/metabolism
  14. Machha A, Achike FI, Mustafa AM, Mustafa MR
    Nitric Oxide, 2007 Jun;16(4):442-7.
    PMID: 17513143 DOI: 10.1016/j.niox.2007.04.001
    The present work examined the effect of chronic oral administration of quercetin, a flavonoid antioxidant, on blood glucose, vascular function and oxidative stress in STZ-induced diabetic rats. Male Wistar-Kyoto (WKY) rats were randomized into euglycemic, untreated diabetic, vehicle (1% w/v methylcellulose)-treated diabetic, which served as control, or quercetin (10mgkg(-1) body weight)-treated diabetic groups and treated orally for 6 weeks. Quercetin treatment reduced blood glucose level in diabetic rats. Impaired relaxations to endothelium-dependent vasodilator acetylcholine (ACh) and enhanced vasoconstriction responses to alpha(1)-adrenoceptor agonist phenylephrine (PE) in diabetic rat aortic rings were restored to euglycemic levels by quercetin treatment. Pretreatment with N(omega)-nitro-l-arginine methyl ester (l-NAME, 10microM) or methylene blue (10microM) completely blocked but indomethacin (10microM) did not affect relaxations to ACh in aortic rings from vehicle- or quercetin-treated diabetic rats. PE-induced vasoconstriction with an essentially similar magnitude in vehicle- or quercetin-treated diabetic rat aortic rings pretreated with l-NAME (10microM) plus indomethacin (10microM). Quercetin treatment reduced plasma malonaldehyde (MDA) plus 4-hydroxyalkenals (4-HNE) content as well as increased superoxide dismutase activity and total antioxidant capacity in diabetic rats. From the present study, it can be concluded that quercetin administration to diabetic rats restores vascular function, probably through enhancement in the bioavailability of endothelium-derived nitric oxide coupled to reduced blood glucose level and oxidative stress.
    Matched MeSH terms: Endothelium, Vascular/drug effects*; Endothelium, Vascular/enzymology
  15. Ramli NZ, Chin KY, Zarkasi KA, Ahmad F
    Nutrients, 2018 Aug 02;10(8).
    PMID: 30072671 DOI: 10.3390/nu10081009
    Metabolic syndrome (MetS) is a cluster of diseases comprising of obesity, diabetes mellitus, dyslipidemia, and hypertension. There are numerous pre-clinical as well as human studies reporting the protective effects of honey against MetS. Honey is a nutritional food low in glycemic index. Honey intake reduces blood sugar levels and prevents excessive weight gain. It also improves lipid metabolism by reducing total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL) and increasing high-density lipoprotein (HDL), which leads to decreased risk of atherogenesis. In addition, honey enhances insulin sensitivity that further stabilizes blood glucose levels and protects the pancreas from overstimulation brought on by insulin resistance. Furthermore, antioxidative properties of honey help in reducing oxidative stress, which is one of the central mechanisms in MetS. Lastly, honey protects the vasculature from endothelial dysfunction and remodelling. Therefore, there is a strong potential for honey supplementation to be integrated into the management of MetS, both as preventive as well as adjunct therapeutic agents.
    Matched MeSH terms: Endothelium, Vascular/metabolism; Endothelium, Vascular/physiopathology
  16. Wee CL, Mokhtar SS, Singh KKB, Yahaya S, Leung SWS, Rasool AHG
    Oxid Med Cell Longev, 2021;2021:3109294.
    PMID: 33623633 DOI: 10.1155/2021/3109294
    Diabetes mellitus contributes to macro- and microvascular complications, leading to adverse cardiovascular events. This study examined the effects of vitamin D deficiency on the vascular function and tissue oxidative status in the microcirculation of diabetic rats and to determine whether these effects can be reversed with calcitriol (active vitamin D metabolite) supplementation. Streptozotocin-induced diabetic rats were fed for 10 weeks with control diet (DC) or vitamin D-deficient diet without (DD) or with oral calcitriol supplementation (0.15 μg/kg) in the last four weeks (DDS) (10 rats each group). A nondiabetic rat group that received control diet was also included (NR). After 10 weeks, rats were sacrificed; mesenteric arterial rings with and without endothelium were studied using wire myograph. Western blotting of the mesenteric arterial tissue was performed to determine the protein expression of endothelial nitric oxide synthase (eNOS) enzyme. Antioxidant enzyme superoxide dismutase (SOD) activity and oxidative stress marker malondialdehyde (MDA) levels in the mesenteric arterial tissue were also measured. The DC group had significantly lower acetylcholine-induced relaxation and augmented endothelium-dependent contraction, with reduced eNOS expression, compared to NR rats. In mesenteric arteries of DD, acetylcholine-induced endothelium-dependent and sodium nitroprusside-induced endothelium-independent relaxations were lower than those in DC. Calcitriol supplementation in DDS restored endothelium-dependent relaxation. Mesenteric artery endothelium-dependent contraction of DD was greater than DC; it was not affected by calcitriol supplementation. The eNOS protein expression and SOD activity were significantly lower while MDA levels were greater in DD compared to DC; these effects were not observed in DDS that received calcitriol supplementation. In conclusion, vitamin D deficiency causes eNOS downregulation and oxidative stress, thereby impairing the vascular function and posing an additional risk for microvascular complications in diabetes. Calcitriol supplementation to diabetics with vitamin D deficiency could potentially be useful in the management of or as an adjunct to diabetes-related cardiovascular complications.
    Matched MeSH terms: Endothelium, Vascular/drug effects; Endothelium, Vascular/physiopathology*
  17. Lau YS, Tian XY, Mustafa MR, Murugan D, Liu J, Zhang Y, et al.
    Br J Pharmacol, 2013 Nov;170(6):1190-8.
    PMID: 23992296 DOI: 10.1111/bph.12350
    Boldine is a potent natural antioxidant present in the leaves and bark of the Chilean boldo tree. Here we assessed the protective effects of boldine on endothelium in a range of models of diabetes, ex vivo and in vitro.
    Matched MeSH terms: Endothelium, Vascular/drug effects; Endothelium, Vascular/physiology
  18. Siti HN, Kamisah Y, Kamsiah J
    Vascul Pharmacol, 2015 Aug;71:40-56.
    PMID: 25869516 DOI: 10.1016/j.vph.2015.03.005
    The concept of mild chronic vascular inflammation as part of the pathophysiology of cardiovascular disease, most importantly hypertension and atherosclerosis, has been well accepted. Indeed there are links between vascular inflammation, endothelial dysfunction and oxidative stress. However, there are still gaps in our understanding regarding this matter that might be the cause behind disappointing results of antioxidant therapy for cardiovascular risk factors in large-scale long-term randomised controlled trials. Apart from the limitations of our knowledge, limitations in methodology and assessment of the body's endogenous and exogenous oxidant-antioxidant status are a serious handicap. The pleiotropic effects of antioxidant and anti-inflammation that are shown by some well-established antihypertensive agents and statins partly support the idea of using antioxidants in vascular diseases as still relevant. This review aims to provide an overview of the links between oxidative stress, vascular inflammation, endothelial dysfunction and cardiovascular risk factors, importantly focusing on blood pressure regulation and atherosclerosis. In view of the potential benefits of antioxidants, this review will also examine the proposed role of vitamin C, vitamin E and polyphenols in cardiovascular diseases as well as the success or failure of antioxidant therapy for cardiovascular diseases in clinical trials.
    Matched MeSH terms: Endothelium, Vascular/drug effects; Endothelium, Vascular/metabolism*
  19. Sanip Z, Ariffin FD, Al-Tahami BA, Sulaiman WA, Rasool AH
    Obes Res Clin Pract, 2013 Jul-Aug;7(4):e315-20.
    PMID: 24306161 DOI: 10.1016/j.orcp.2012.05.002
    Obese subjects had increased serum high sensitivity C-reactive protein (hs-CRP), decreased adiponectin levels, and impaired microvascular endothelial function compared to lean subjects. We investigated the relationships of serum hs-CRP, adiponectin and microvascular endothelial function with obesity indices and metabolic markers in overweight and obese female subjects. Anthropometric profile, body fat composition, biochemical analysis, serum hs-CRP and adiponectin levels, and microvascular endothelial function were measured in 91 female subjects. Microvascular endothelial function was determined using laser Doppler fluximetry and the process of iontophoresis. Mean age and body mass index (BMI) of subjects were 34.88 (7.87) years and 32.93 (4.82) kg/m(2). hs-CRP levels were positively correlated with weight, BMI, waist circumference, hip circumference, body fat and visceral fat. Adiponectin levels were positively correlated with insulin sensitivity index (HOMA-%S), and inversely correlated with waist hip ratio, triglyceride, fasting insulin and insulin resistance index (HOMA-IR). No relationship was seen between microvascular endothelial function and obesity indices, and metabolic markers. In overweight and obese female subjects, hs-CRP levels were correlated with obesity indices while adiponectin levels were inversely correlated with obesity indices and metabolic markers. No significant relationship was seen between microvascular endothelial function with obesity indices and metabolic markers including hs-CRP and adiponectin in female overweight and obese subjects.
    Matched MeSH terms: Endothelium/physiopathology
  20. Al-Tahami BA, Ismail AA, Bee YT, Awang SA, Salha Wan Abdul Rani WR, Sanip Z, et al.
    Clin. Hemorheol. Microcirc., 2015;59(4):323-34.
    PMID: 24002121 DOI: 10.3233/CH-131765
    INTRODUCTION: Obesity is associated with impaired microvascular endothelial function. We aimed to determine the effects of orlistat and sibutramine treatment on microvascular endothelial function, anthropometric and lipid profile, blood pressure (BP), and heart rate (HR).
    METHODS: 76 subjects were recruited and randomized to receive orlistat 120 mg three times daily or sibutramine 10 mg daily for 9 months. Baseline weight, BMI, BP, HR and lipid profile were taken. Microvascular endothelial function was assessed using laser Doppler fluximetry and iontophoresis process. Maximum change (max), percent change (% change) and peak flux (peak) in perfusion to acetylcholine (ACh) and sodium nitroprusside (SNP) iontophoresis were used to quantify endothelium dependent and independent vasodilatations.
    RESULTS: 24 subjects in both groups completed the trial. After treatment, weight and BMI were decreased for both groups. AChmax, ACh % change and ACh peak were increased in orlistat-treated group but no difference was observed for sibutramine-treated group. BP and total cholesterol (TC) were reduced for orlistat-treated group. HR was reduced for orlistat-treated group but was increased in sibutramine-treated group.
    CONCLUSION: 9 months treatment with orlistat significantly improved microvascular endothelial function. This was associated with reductions in weight, BMI, BP, HR, TC and low density lipoprotein cholesterol. No effect was seen in microvascular endothelial function with sibutramine.
    KEYWORDS: Microvascular endothelial function; obesity; orlistat; sibutramine
    Matched MeSH terms: Endothelium, Vascular/drug effects*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links