Displaying publications 81 - 100 of 130 in total

Abstract:
Sort:
  1. Bijle MN, Pichika MR, Mak KK, Parolia A, Babar MG, Yiu C, et al.
    Molecules, 2021 Oct 31;26(21).
    PMID: 34771014 DOI: 10.3390/molecules26216605
    This study's objective was to examine L-arginine (L-arg) supplementation's effect on mono-species biofilm (Streptococcus mutans/Streptococcus sanguinis) growth and underlying enamel substrates. The experimental groups were 1%, 2%, and 4% arg, and 0.9% NaCl was used as the vehicle control. Sterilised enamel blocks were subjected to 7-day treatment with test solutions and S. mutans/S. sanguinis inoculum in BHI. Post-treatment, the treated biofilms stained for live/dead bacterial cells were analysed using confocal microscopy. The enamel specimens were analysed using X-ray diffraction crystallography (XRD), Raman spectroscopy (RS), and transmission electron microscopy (TEM). The molecular interactions between arg and MMP-2/MMP-9 were determined by computational molecular docking and MMP assays. With increasing arg concentrations, bacterial survival significantly decreased (p < 0.05). The XRD peak intensity with 1%/2% arg was significantly higher than with 4% arg and the control (p < 0.05). The bands associated with the mineral phase by RS were significantly accentuated in the 1%/2% arg specimens compared to in other groups (p < 0.05). The TEM analysis revealed that 4% arg exhibited an ill-defined shape of enamel crystals. Docking of arg molecules to MMPs appears feasible, with arg inhibiting MMP-2/MMP-9 (p < 0.05). L-arginine supplementation has an antimicrobial effect on mono-species biofilm. L-arginine treatment at lower (1%/2%) concentrations exhibits enamel hydroxyapatite stability, while the molecule has the potential to inhibit MMP-2/MMP-9.
    Matched MeSH terms: Durapatite/pharmacology*; Durapatite/chemistry
  2. Balaji Raghavendran HR, Puvaneswary S, Talebian S, Murali MR, Raman Murali M, Naveen SV, et al.
    PLoS One, 2014;9(8):e104389.
    PMID: 25140798 DOI: 10.1371/journal.pone.0104389
    A comparative study on the in vitro osteogenic potential of electrospun poly-L-lactide/hydroxyapatite/collagen (PLLA/HA/Col, PLLA/HA, and PLLA/Col) scaffolds was conducted. The morphology, chemical composition, and surface roughness of the fibrous scaffolds were examined. Furthermore, cell attachment, distribution, morphology, mineralization, extracellular matrix protein localization, and gene expression of human mesenchymal stromal cells (hMSCs) differentiated on the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA were also analyzed. The electrospun scaffolds with a diameter of 200-950 nm demonstrated well-formed interconnected fibrous network structure, which supported the growth of hMSCs. When compared with PLLA/H%A and PLLA/Col scaffolds, PLLA/Col/HA scaffolds presented a higher density of viable cells and significant upregulation of genes associated with osteogenic lineage, which were achieved without the use of specific medium or growth factors. These results were supported by the elevated levels of calcium, osteocalcin, and mineralization (P<0.05) observed at different time points (0, 7, 14, and 21 days). Furthermore, electron microscopic observations and fibronectin localization revealed that PLLA/Col/HA scaffolds exhibited superior osteoinductivity, when compared with PLLA/Col or PLLA/HA scaffolds. These findings indicated that the fibrous structure and synergistic action of Col and nano-HA with high-molecular-weight PLLA played a vital role in inducing osteogenic differentiation of hMSCs. The data obtained in this study demonstrated that the developed fibrous PLLA/Col/HA biocomposite scaffold may be supportive for stem cell based therapies for bone repair, when compared with the other two scaffolds.
    Matched MeSH terms: Durapatite
  3. Ibrahim S, Sabudin S, Sahid S, Marzuke MA, Hussin ZH, Kader Bashah NS, et al.
    Saudi J Biol Sci, 2016 Jan;23(1):S56-63.
    PMID: 26858566 DOI: 10.1016/j.sjbs.2015.10.024
    Surface reactivity of bioactive ceramics contributes in accelerating bone healing by anchoring osteoblast cells and the connection of the surrounding bone tissues. The presence of silicon (Si) in many biocompatible and bioactive materials has been shown to improve osteoblast cell adhesion, proliferation and bone regeneration due to its role in the mineralisation process around implants. In this study, the effects of Si-biphasic calcium phosphate (Si-BCP) on bioactivity and adhesion of human osteoblast (hFOB) as an in vitro model have been investigated. Si-BCP was synthesised using calcium hydroxide (Ca(OH)2) and phosphoric acid (H3PO4) via wet synthesis technique at Ca/P ratio 1.60 of material precursors. SiO2 at 3 wt% based on total precursors was added into apatite slurry before proceeding with the spray drying process. Apatite powder derived from the spray drying process was pressed into discs with Ø 10 mm. Finally, the discs were sintered at atmospheric condition to obtain biphasic hydroxyapatite (HA) and tricalcium phosphate (TCP) peaks simultaneously and examined by XRD, AFM and SEM for its bioactivity evaluation. In vitro cell viability of L929 fibroblast and adhesion of hFOB cell were investigated via AlamarBlue® (AB) assay and SEM respectively. All results were compared with BCP without Si substitution. Results showed that the presence of Si affected the material's surface and morphology, cell proliferation and cell adhesion. AFM and SEM of Si-BCP revealed a rougher surface compared to BCP. Bioactivity in simulated body fluid (SBF) was characterised by pH, weight gain and apatite mineralisation on the sample surface whereby the changes in surface morphology were evaluated using SEM. Immersion in SBF up to 21 days indicated significant changes in pH, weight gain and apatite formation. Cell viability has demonstrated no cytotoxic effect and denoted that Si-BCP promoted good initial cell adhesion and proliferation. These results suggest that Si-BCP's surface roughness (164 nm) was significantly higher than BCP (88 nm), thus enhancing the adhesion and proliferation of the osteoblast.
    Matched MeSH terms: Durapatite
  4. Komang-Agung IS, Hydravianto L, Sindrawati O, William PS
    Malays Orthop J, 2018 Nov;12(3):6-13.
    PMID: 30555640 DOI: 10.5704/MOJ.1811.002
    Introduction: Percutaneous vertebroplasty (PV) is one of the available treatments for vertebral compression fracture (VCF). Polymethylmethacrylate (PMMA) is the most common bone substitute used in the procedure, but it has several disadvantages. Bioceramic material, such as hydroxyapatite (HA), has better biological activity compared to PMMA. The aim of this study was to find an optimal biomaterial compound which offers the best mechanical and biological properties to be used in PV. Materials and Methods: This was an experimental study with goat (Capra aegagrus hircus) as an animal model. The animals' vertebral columns were injected with PMMA-HA compound. Animal samples were divided into four groups, and each group received a different proportion of PMMA:HA compound. The mechanical and biological effects of the compound on the bone were then analysed. The mechanical effect was assessed by measuring the vertebral body's compressive strength. Meanwhile, the biological effect was assessed by analysing the callus formation in the vertebral body. Results: The optimal callus formation and compressive strength was observed in the group receiving PMMA:HA with a 1:2 ratio. Conclusion: A mixture of PMMA and HA increases the quality of callus formation and the material's compressive strength. The optimum ratio of PMMA:HA in the compound is 1:2.
    Matched MeSH terms: Durapatite
  5. Rozila I, Azari P, Munirah S, Safwani WKZW, Pingguan-Murphy B, Chua KH
    Polymers (Basel), 2021 Feb 17;13(4).
    PMID: 33671175 DOI: 10.3390/polym13040597
    (1) Background: Stem cells in combination with scaffolds and bioactive molecules have made significant contributions to the regeneration of damaged bone tissues. A co-culture system can be effective in enhancing the proliferation rate and osteogenic differentiation of the stem cells. Hence, the aim of this study was to investigate the osteogenic differentiation of human adipose derived stem cells when co-cultured with human osteoblasts and seeded on polycaprolactone (PCL):hydroxyapatite (HA) scaffold; (2) Methods: Human adipose-derived stem cells (ASC) and human osteoblasts (HOB) were seeded in three different ratios of 1:2, 1:2 and 2:1 in the PCL-HA scaffolds. The osteogenic differentiation ability was evaluated based on cell morphology, proliferation rate, alkaline phosphatase (ALP) activity, calcium deposition and osteogenic genes expression levels using quantitative RT-PCR; (3) Results: The co-cultured of ASC/HOB in ratio 2:1 seeded on the PCL-HA scaffolds showed the most positive osteogenic differentiation as compared to other groups, which resulted in higher ALP activity, calcium deposition and osteogenic genes expression, particularly Runx, ALP and BSP. These genes indicate that the co-cultured ASC/HOB seeded on PCL-HA was at the early stage of osteogenic development; (4) Conclusions: The combination of co-culture system (ASC/HOB) and PCL-HA scaffolds promote osteogenic differentiation and early bone formation.
    Matched MeSH terms: Durapatite
  6. Singh PKM, Noor MIM, Jaafar R, Ahmad A, Mohamad I
    Medeni Med J, 2021;36(1):75-79.
    PMID: 33828894 DOI: 10.5222/MMJ.2021.37539
    Retropharyngeal calcific tendonitis (RCT) is an aseptic inflammatory process of the superior oblique tendons of the longus colli muscle caused by the deposition of calcium hydroxyapatite crystals. We reported a 23-year-old woman who presented with a sudden onset of neck pain with odynophagia after waking up from sleep. Physical examination showed paracervical point tenderness with limited neck movement in all directions. Prior to surgery, further imaging was requested to aid in diagnosis, which in turn revealed RCT. It is important to be aware that RCT presentation may mimic other severe conditions such as retropharyngeal space abscess or meningitis.
    Matched MeSH terms: Durapatite
  7. Moshiri A, Tekyieh Maroof N, Mohammad Sharifi A
    Iran J Basic Med Sci, 2020 Nov;23(11):1426-1438.
    PMID: 33235700 DOI: 10.22038/ijbms.2020.46228.10707
    Objectives: We investigated the role of various biomaterials on cell viability and in healing of an experimentally induced femoral bone hole model in rats.

    Materials and Methods: Cell viability and cytotoxicity of gelatin (Gel; 50 µg/µl), chitosan (Chi; 20 µg/µl), hydroxyapatite (HA; 50 µg/µl), nanohydroxyapatite (nHA; 10 µg/µl), three-calcium phosphate (TCP; 50 µg/µl) and strontium carbonate (Sr; 10 µg/µl) were evaluated on hADSCs via MTT assay. In vivo femoral drill-bone hole model was produced in rats that were either left untreated or treated with autograft, Gel, Chi, HA, nHA, TCP and Sr, respectively. The animals were euthanized after 30 days. Their bone holes were evaluated by gross-pathology, histopathology, SEM and radiography. Also, their dry matter, bone ash and mineral density were measured.

    Results: Both the Gel and Chi showed cytotoxicity, while nHA had no role on cytotoxicity and cell-viability. All the HA, TCP and Sr significantly improved cell viability when compared to controls (P<0.05). Both the Gel and Chi had no role on osteoconduction and osteoinduction. Compared to HA, nHA showed superior role in increasing new bone formation, mineral density and ash (P<0.05). In contrast to HA and nHA, both the TCP and Sr showed superior morphological, radiographical and biochemical properties on bone healing (P<0.05). TCP and Sr showed the most effective osteoconduction and osteoinduction, respectively. In the Sr group, the most mature type of osteons formed.

    Conclusion: Various biomaterials have different in vivo efficacy during bone regeneration. TCP was found to be the best material for osteoconduction and Sr for osteoinduction.

    Matched MeSH terms: Durapatite
  8. Sri Asliza, M.A., Zaheruddin, K., Shahrizal, H.
    MyJurnal
    In this study, natural Hydroxyapatite (HA) was extracted from clean cow bone by treatment with NaOH and heating at high temperature before ground into fine powder. The HA powder were than mixed together with binder for several hours. Dense HA were formed in die steel mould by using uniaxially pressing method. Sample was sintered at different temperature 1150, 1200, 1250 and 1300°C for several hours. The phases of specimen were identified using X-ray diffraction (XRD). The mechanical properties were analyzed using three-point bending testing and the microstructure was observed by scanning electron microscopy. From XRD results, natural HA shows phase of pure HA up to 1250 o C and fracture strength results indicated that the mechanical properties of specimen increase as temperature increase. From microstructure observation using SEM, HA specimen shows initial stages of sintering process at temperature 1150°C and show changes in microstructure evolution as temperature increase up to 1300°C.
    Matched MeSH terms: Durapatite
  9. Hari P, Kacharaju KR, Anumala N, Pathakota KR, Avula J
    J Indian Soc Periodontol, 2018 5 18;22(2):133-139.
    PMID: 29769768 DOI: 10.4103/jisp.jisp_320_17
    Context: Biofilms are known for their antimicrobial resistance, and so is the subgingival plaque biofilm, the primary etiologic factor for periodontal infections.

    Aims: The objective of this study is to investigate if the subgingival plaque biofilm resistance can be reduced using doxycycline in the presence of low-intensity electric field (bioelectric effect).

    Settings and Design: The study was an in vitro microbiological study.

    Materials and Methods: Subgingival plaque samples from chronic periodontitis patients were collected to grow subgingival plaque biofilms on hydroxyapatite disks. Hydroxyapatite disks with the plaque biofilms from each patient were divided into four groups: (i) No intervention - control, (ii) current alone - CU; (iii) doxycycline - AB, and (iv) combined treatment - CU + AB. After respective treatments, the disks were anaerobically incubated for 48 h, the biofilm was dispersed and subcultured and colony-forming unit/mL was estimated in all the four groups.

    Statistical Analysis: Statistical analysis was done using Mann-Whitney and Kruskal-Wallis tests for intergroup comparisons. T-test was done to assess the difference in current flow between the groups CU and CU + AB.

    Results: All the three treatment modalities showed antibacterial effect. Application of current alone resulted in reduced bacterial growth than control group. Doxycycline alone resulted in reduction in bacterial counts better than control and current alone groups. The combination treatment showed greatest inhibition of bacterial colonies.

    Conclusion: The ability of doxycycline antibiotic in inhibiting plaque biofilm was significantly enhanced by application of a weak electric field (5 volts for 2 min).

    Matched MeSH terms: Durapatite
  10. Muhammad Awaludin, M.S., Mariattia, M.
    MyJurnal
    Porous ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. In this study, porous hydroxyapatite (HA) was produced via polymer replication method. Polyurethane (PU) sponge was selected as the template and synthetic binder, polyvinyl alcohol (PVA) was used in this study. Fixed formulation of HA powder, distilled water and PVA (40:60:3) were prepared and stirred at a constant 4 hours time. PU sponges with 30 ppi and 60 ppi size were cut and impregnated in slurry using vacuum and roller infiltration methods. The microstructures were observed by using field emission scanning electron microscope (FESEM). The results obtained indicate that vacuum infiltration method and 60 ppi template pore size exhibited the highest compressive strength with moderate average strut thickness and lowest average pore size compared to samples produced by roller infiltration method at different template pore size.
    Matched MeSH terms: Durapatite
  11. Akram Hassan, Swaminathan D
    Hydroxyapatite (HA) used for bone replacement is one of the most active areas of ceramic biomaterials research currently. It has been used clinically for the last 20 years due to its excellent biocompatibility, osseoconduction and osseointegration. Many modifications have been done to develop a stronger, tougher and biocompatible ceramic biomaterial because pure HA is brittle. Researchers in Universiti Sains Malaysia had developed this value added HA that is stronger and less brittle compared to pure HA. The objective of this in vitro study was to evaluate the genotoxic characteristic of the value added HA based material by using Bacterial Reverse Mutation Assay (Ames test). The Bacterial Reverse Mutation Assay of HA was performed on Salmonella typhimurium strains TA98, TA100, TA1535, TA1537 and Escherichia coli strain WP2 uvrA using the preincubation method in the presence and absence of an exogenous metabolic activation system. All the bacterial tester strains treated with and without S9 Mix showed no increase of revertant colonies with increase in concentration of test substance for both the dose finding test and the main test. The number of revertant colonies was less than twice that of the solvent control for all the five bacterial strains and this was reproducible for both the dose finding test and the main test. The numbers of revertant colonies in the negative and positive controls were within the background data of our laboratory. In conclusion the results of the tests showed that the value added HA was considered to have no reverse mutagenic potential under the present test conditions.
    Matched MeSH terms: Durapatite
  12. Dai Z, Dang M, Zhang W, Murugan S, Teh SW, Pan H
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):1898-1907.
    PMID: 31066314 DOI: 10.1080/21691401.2019.1573183
    Hydroxyapatite (HAP) is a significant bone mineral that establishes bone strength. HAP composites in combination with biodegradable and bioactive polymer poly xylitol sebacic adipate (PXSA) would result in a constant release at target sites. Numerous studies have shown that vitamin K (VK) might possess a vital function in bone metabolism. The purpose of the present study was to inspect the synthesized composite HAP/PXSA/VK in developing polymeric biomaterials composite for the application of bone tissue regeneration. FTIR, X-ray diffraction, SEM and TEM techniques were applied to characterize the prepared composites. The release of VK from the HAP/PXSA/VK composite was evidenced through UV-Vis spectroscopy. In vitro studies proved that the HAP/PXSA/VK composite is appropriate for mesenchymal stem cell culture. Compared to pure HAP prepared following the same method, HAP/PXSA/VK composite provided favourable microstructures and good biodegradation distinctiveness for the application of tissue engineering, as well as tissue in-growth characteristics and improved scaffold cell penetration. This work reveals that the HAP/PXSA/VK composites have the potential for applications in bone tissue engineering.
    Matched MeSH terms: Durapatite
  13. Farrahshaida Mohd Salleh, Abu Bakar Sulong, Muhammad Rafi Raza, Norhamidi Muhamad, Lim TF
    Sains Malaysiana, 2017;46:1651-1657.
    owder injection molding (PIM) is able to produce porous titanium alloy/hydroxyapatite composite through the space holder technique. Thermal debinding and sintering processes were the main challenges due to different properties of metal and ceramic in producing such composite. This study focused on the effect of different space holders on the physical and mechanical properties of debound and sintered porous titanium aloi/hydroxyapatite composite. The feedstock is containing of 80 wt. % of titanium alloy/hydroxyapatite with 20 wt. % of space holders such as sodium chloride (NaCl) and polymethylmethacrylate (PMMA), respectively. The binders were then removed from the injected samples by two stages of debinding; solvent and thermal debinding. The sintering was performed at three different temperatures 1100oC, 1200oC and 1300oC at a heating rate of 10oC /min and holding time of 5 h. It was found that the samples containing PMMA space holder was fractured after sintering. While, the samples containing NaCl space holder successfully formed pores and not fractured. At sintering temperature of 1300oC, the density, compressive strength and porosity volume percentages for the sintered sample containing NaCl space holder were 3.05 g/cm3, 91.7 MPa. and 11.9 vol%, respectively.
    Matched MeSH terms: Durapatite
  14. Pramanik S, Hanif ASM, Pingguan-Murphy B, Abu Osman NA
    Materials (Basel), 2012 Dec 21;6(1):65-75.
    PMID: 28809294 DOI: 10.3390/ma6010065
    In this work, untreated bovine cortical bones (BCBs) were exposed to a range of heat treatments in order to determine at which temperature the apatite develops an optimum morphology comprising porous nano hydroxyapatite (nanoHAp) crystals. Rectangular specimens (10 mm × 10 mm × 3-5 mm) of BCB were prepared, being excised in normal to longitudinal and transverse directions. Specimens were sintered at up to 900 °C under ambient pressure in order to produce apatites by two steps sintering. The samples were characterized by thermogravimetric analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM) attached to an energy-dispersive X-ray spectroscopy detector. For the first time, morphology of the HAp particles was predicted by XRD, and it was verified by SEM. The results show that an equiaxed polycrystalline HAp particle with uniform porosity was produced at 900 °C. It indicates that a porous nanoHAp achieved by sintering at 900 °C can be an ideal candidate as an in situ scaffold for load-bearing tissue applications.
    Matched MeSH terms: Durapatite
  15. Hassan MI, Masnawi NN, Sultana N
    ASAIO J., 2017 9 14;64(3):415-423.
    PMID: 28901994 DOI: 10.1097/MAT.0000000000000655
    Conductive materials are potential candidates for developing bone tissue engineering scaffolds as they are nontoxic and can enhance bone tissue regeneration. Their bioactivity can be enhanced by depositing biomineralization in simulated body fluid (SBF). In the current study, a composite electrospun membrane made up of poly(lactic) acid, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and hydroxyapatite was fabricated using an electrospinning method. The fabricated membranes were dip-coated with a conductive polymer solution, poly(3,4-ethylenedioxythiophene) poly(4-styrenesulfonate), to induce conductivity. Characterization of the membranes based on characteristics such as morphology, chemical bonding, and wettability was conducted using scanning electron microscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy, and contact angle measurement. From the results, biomineralization of both coated and noncoated composite membranes was observed on the surface of nanofibers after 21 days in SBF. The membranes provide a superhydrophilic surface as shown by the contact angle. In conclusion, this biomimetic electrospun composite membrane could be used to further support cell growth for bone tissue engineering application.
    Matched MeSH terms: Durapatite
  16. Kamalaldin N', Jaafar M, Zubairi SI, Yahaya BH
    Adv Exp Med Biol, 2019;1084:1-15.
    PMID: 29299875 DOI: 10.1007/5584_2017_130
    The use of bioceramics, especially the combination of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), as a three-dimensional scaffold in bone engineering is essential because together these elements constitute 60% of the bone content. Different ratios of HA and β-TCP were previously tested for their ability to produce suitable bioceramic scaffolds, which must be able to withstand high mechanical load. In this study, two ratios of HA/TCP (20:80 and 70:30) were used to create pellets, which then were evaluated in vitro to identify any adverse effects of using the material in bone grafting. Diametral tensile strength (DTS) and density testing was conducted to assess the mechanical strength and porosity of the pellets. The pellets then were tested for their toxicity to normal human fibroblast cells. In the toxicity assay, cells were incubated with the pellets for 3 days. At the end of the experiment, cell morphological changes were assessed, and the absorbance was read using PrestoBlue Cell Viability Reagent™. An inversely proportional relationship between DTS and porosity percentage was detected. Fibroblasts showed normal cell morphology in both treatments, which suggests that the HA/TCP pellets were not toxic. In the osteoblast cell attachment assay, cells were able to attach to the surface of both ratios, but cells were also able to penetrate inside the scaffold of the 70:30 pellets. This finding suggests that the 70:30 ratio had better osteoconduction properties than the 20:80 ratio.
    Matched MeSH terms: Durapatite
  17. Mohamed AM
    Malays J Med Sci, 2008 Jan;15(1):4-12.
    PMID: 22589609 MyJurnal
    Bone is a specialised connective tissue and together with cartilage forms the strong and rigid endoskeleton. These tissues serve three main functions: scaffold for muscle attachment for locomotion, protection for vital organs and soft tissues and reservoir of ions for the entire organism especially calcium and phosphate. One of the most unique and important properties of bone is its ability to constantly undergo remodelling even after growth and modelling of the skeleton have been completed. Remodelling processes enable the bone to respond and adapt to changing functional situations. Bone is composed of various types of cells and collagenous extracellular organic matrix, which is predominantly type I collagen (85-95%) called osteoid that becomes mineralised by the deposition of calcium hydroxyapatite. The non-collagenous constituents are composed of proteins and proteoglycans, which are specific to bone and the dental hard connective tissues. Maintenance of appropriate bone mass depends upon the precise balance of bone formation and bone resorption which is facilitated by the ability of osteoblastic cells to regulate the rate of both differentiation and activity of osteoclasts as well as to form new bone. An overview of genetics and molecular mechanisms that involved in the differentiation of osteoblast and osteoclast is discussed.
    Matched MeSH terms: Durapatite
  18. Saidin S, Chevallier P, Abdul Kadir MR, Hermawan H, Mantovani D
    Mater Sci Eng C Mater Biol Appl, 2013 Dec 1;33(8):4715-24.
    PMID: 24094179 DOI: 10.1016/j.msec.2013.07.026
    Hydroxyapatite (HA) coated implant is more susceptible to bacterial infection as the micro-structure surface which is beneficial for osseointegration, could also become a reservoir for bacterial colonisation. The aim of this study was to introduce the antibacterial effect of silver (Ag) to the biomineralised HA by utilising a polydopamine film as an intermediate layer for Ag and HA immobilisation. Sufficient catechol groups in polydopamine were required to bind chemically stainless steel 316 L, Ag and HA elements. Different amounts of Ag nanoparticles were metallised on the polydopamine grafted stainless steel by varying the immersion time in silver nitrate solution from 12 to 24 h. Another polydopamine layer was then formed on the metallised film, followed by surface biomineralisation in 1.5 Simulated Body Fluid (SBF) solution for 3 days. Several characterisation techniques including X-Ray Photoelectron Spectroscopy, Atomic Force Microscopy, Scanning Electron Microscopy and Contact Angle showed that Ag nanoparticles and HA agglomerations were successfully immobilised on the polydopamine film through an element reduction process. The Ag metallisation at 24 h has killed the viable bacteria with 97.88% of bactericidal ratio. The Ag was ionised up to 7 days which is crucial to prevent bacterial infection during the first stage of implant restoration. The aged functionalised films were considered stable due to less alteration of its chemical composition, surface roughness and wettability properties. The ability of the functionalised film to coat complex and micro scale metal make it suitable for dental and orthopaedic implants application.
    Matched MeSH terms: Durapatite/chemistry*
  19. Lim SR, Gooi BH, Singh M, Gam LH
    Appl Biochem Biotechnol, 2011 Nov;165(5-6):1211-24.
    PMID: 21863284 DOI: 10.1007/s12010-011-9339-3
    Limitation on two dimensional (2D) gel electrophoresis technique causes some proteins to be under presented, especially the extreme acidic, basic, or membrane proteins. To overcome the limitation of 2D electrophoresis, an analysis method was developed for identification of differentially expressed proteins in normal and cancerous colonic tissues using self-pack hydroxyapatite (HA) column. Normal and cancerous colon tissues were homogenized and proteins were extracted using sodium phosphate buffer at pH 6.8. Protein concentration was determined and the proteins were loaded unto the HA column. HA column reduced the complexity of proteins mixture by fractionating the proteins according to their ionic strength. Further protein separation was accomplished by a simple and cost effective sodium dodecyl sulfate-polyacrylamide gel electrophoresis method. The protein bands were subjected to in-gel digestion and protein analysis was performed using electrospray ionization (ESI) ion trap mass spectrometer. There were 17 upregulated proteins and seven downregulated proteins detected with significant differential expression. Some of these proteins were low abundant proteins or proteins with extreme pH that were usually under presented in 2D gel analysis. We have identified brain mitochondrial carrier protein 1, T-cell surface glycoprotein CD1a, SOSS complex subunit B2, and Protein Jade 1 which were previously not detected in 2D gel analysis method.
    Matched MeSH terms: Durapatite/chemistry
  20. Chew KK, Low KL, Sharif Zein SH, McPhail DS, Gerhardt LC, Roether JA, et al.
    J Mech Behav Biomed Mater, 2011 Apr;4(3):331-9.
    PMID: 21316621 DOI: 10.1016/j.jmbbm.2010.10.013
    This paper presents the development of novel alternative injectable calcium phosphate cement (CPC) composites for orthopaedic applications. The new CPC composites comprise β-tri-calcium phosphate (β-TCP) and di-calcium phosphate anhydrous (DCPA) mixed with bovine serum albumin (BSA) and incorporated with multi-walled carbon nanotubes (MWCNTs) or functionalized MWCNTs (MWCNTs-OH and MWCNTs-COOH). Scanning electron microscopy (SEM), compressive strength tests, injectability tests, Fourier transform infrared spectroscopy and X-ray diffraction were used to evaluate the properties of the final products. Compressive strength tests and SEM observations demonstrated particularly that the concomitant admixture of BSA and MWCNT improved the mechanical properties, resulting in stronger CPC composites. The presence of MWCNTs and BSA influenced the morphology of the hydroxyapatite (HA) crystals in the CPC matrix. BSA was found to act as a promoter of HA growth when bounded to the surface of CPC grains. MWCNT-OH-containing composites exhibited the highest compressive strengths (16.3 MPa), being in the range of values for trabecular bone (2-12 MPa).
    Matched MeSH terms: Durapatite/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links