Displaying publications 81 - 90 of 90 in total

Abstract:
Sort:
  1. Dieng H, Tan Yusop NS, Kamal NN, Ahmad AH, Ghani IA, Abang F, et al.
    J Agric Food Chem, 2016 May 11;64(18):3485-91.
    PMID: 27115536 DOI: 10.1021/acs.jafc.6b01157
    Dengue mosquitoes are evolving into a broader global public health menace, with relentless outbreaks and the rise in number of Zika virus disease cases as reminders of the continued hazard associated with Aedes vectors. The use of chemical insecticides-the principal strategy against mosquito vectors-has been greatly impeded due to the development of insecticide resistance and the shrinking spectrum of effective agents. Therefore, there is a pressing need for new chemistries for vector control. Tea contains hundreds of chemicals, and its waste, which has become a growing global environmental problem, is almost as rich in toxicants as green leaves. This paper presents the toxic and sublethal effects of different crude extracts of tea on Aedes albopictus. The survival rates of larvae exposed to tea extracts, especially fresh tea extract (FTE), were markedly lower than those in the control treatment group. In addition to this immediate toxicity against different developmental stages, the extracts tested caused a broad range of sublethal effects. The developmental time was clearly longer in containers with tea, especially in those with young larvae (YL) and FTE. Among the survivors, pupation success was reduced in containers with tea, which also produced low adult emergence rates with increasing tea concentration. The production of eggs tended to be reduced in females derived from the tea treatment groups. These indirect effects of tea extracts on Ae. albopictus exhibited different patterns according to the exposed larval stage. Taken together, these findings indicate that tea and its waste affect most key components of Ae. albopictus vectorial capacity and may be useful for dengue control. Reusing tea waste in vector control could also be a practical solution to the problems associated with its pollution.
    Matched MeSH terms: Dengue/transmission
  2. Hairi F, Ong CH, Suhaimi A, Tsung TW, bin Anis Ahmad MA, Sundaraj C, et al.
    Asia Pac J Public Health, 2003;15(1):37-43.
    PMID: 14620496
    A cross-sectional survey was conducted to assess the level of knowledge, attitude and practices concerning dengue and its vector Aedes mosquito among selected rural communities in the Kuala Kangsar district from 16-25th June, 2002. It was found that the knowledge of the community was good. Out of the 200 respondents, 82.0% cited that their main source of information on dengue was from television/radio. The respondents' attitude was found to be good and most of them were supportive of Aedes control measures. There is a significant association found between knowledge of dengue and attitude towards Aedes control (p = 0.047). It was also found that good knowledge does not necessarily lead to good practice. This is most likely due to certain practices like water storage for domestic use, which is deeply ingrained in the community. Mass media is an important means of conveying health messages to the public even among the rural population, thus research and development of educational strategies designed to improve behaviour and practice of effective control measures among the villagers are recommended.
    Matched MeSH terms: Dengue/transmission
  3. Ishak IH, Kamgang B, Ibrahim SS, Riveron JM, Irving H, Wondji CS
    PLoS Negl Trop Dis, 2017 01;11(1):e0005302.
    PMID: 28114328 DOI: 10.1371/journal.pntd.0005302
    BACKGROUND: Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance.

    METHODOLOGY/PRINCIPAL FINDINGS: Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise pyrethroids, DDT and bendiocarb.

    CONCLUSION/SIGNIFICANCE: The predominant over-expression of cytochrome P450s suggests that synergist-based (PBO) control tools could be utilised to improve control of this major dengue vector across Malaysia.

    Matched MeSH terms: Dengue/transmission
  4. Rozilawati H, Lee HL, Mohd Masri S, Mohd Noor I, Rosman S
    Trop Biomed, 2005 Dec;22(2):143-8.
    PMID: 16883280 MyJurnal
    Field bioefficacy of residual-sprayed deltamethrin against Aedes vectors was evaluated in an urban residential area in Kuala Lumpur. The trial area consisted of single storey wood-brick houses and a block of flat. The houses were treated with outdoor residual spraying while the flat was used as an untreated control. Initial pre-survey using ovitrap surveillance indicated high Aedes population in the area. Deltamethrin WG was sprayed at a dosage of 25mg/m2 using a compression sprayer. The effectiveness of deltamethrin was determined by wall bioassay and ovitrap surveillance. The residual activity of 25mg/m2 deltamethrin was still effective for 6 weeks after treatment, based on biweekly bioassay results. Bioassay also indicated that both Aedes aegypti and Aedes albopictus were more susceptible on the wooden surfaces than on brick. Aedes aegypti was more susceptible than Ae. albopictus against deltamethrin. Residual spraying of deltamethrin was not very effective against Aedes in this study since the Aedes population in the study area did not reduce as indicated by the total number of larvae collected using the ovitrap (Wilcoxon Sign Test, p> 0.05). Further studies are required to improve the effectiveness of residual spraying against Aedes vectors.
    Matched MeSH terms: Dengue/transmission
  5. Coudeville L, Baurin N, L'Azou M, Guy B
    Vaccine, 2016 12 07;34(50):6426-6435.
    PMID: 27601343 DOI: 10.1016/j.vaccine.2016.08.050
    BACKGROUND: A tetravalent dengue vaccine demonstrated its protective efficacy in two phase III efficacy studies. Results from these studies were used to derive vaccination impact in the five Asian (Indonesia, Malaysia, Philippines, Thailand, Vietnam) and the five Latin American countries (Brazil, Colombia, Honduras, Mexico and Puerto Rico) participating in these trials.

    METHODS: Vaccination impact was investigated with an age-structured, host-vector, serotype-specific compartmental model. Parameters related to vaccine efficacy and levels of dengue transmission were estimated using data collected during the phase III efficacy studies. Several vaccination programs, including routine vaccination at different ages with and without large catch-up campaigns, were investigated.

    RESULTS: All vaccination programs explored translated into significant reductions in dengue cases at the population level over the first 10years following vaccine introduction and beyond. The most efficient age for vaccination varied according to transmission intensity and 9years was close to the most efficient age across all settings. The combination of routine vaccination and large catch-up campaigns was found to enable a rapid reduction of dengue burden after vaccine introduction.

    CONCLUSION: Our analysis suggests that dengue vaccination can significantly reduce the public health impact of dengue in countries where the disease is endemic.

    Matched MeSH terms: Dengue/transmission*
  6. Ong SQ, Ahmad H, Nair G, Isawasan P, Majid AHA
    Sci Rep, 2021 05 10;11(1):9908.
    PMID: 33972645 DOI: 10.1038/s41598-021-89365-3
    Classification of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) by humans remains challenging. We proposed a highly accessible method to develop a deep learning (DL) model and implement the model for mosquito image classification by using hardware that could regulate the development process. In particular, we constructed a dataset with 4120 images of Aedes mosquitoes that were older than 12 days old and had common morphological features that disappeared, and we illustrated how to set up supervised deep convolutional neural networks (DCNNs) with hyperparameter adjustment. The model application was first conducted by deploying the model externally in real time on three different generations of mosquitoes, and the accuracy was compared with human expert performance. Our results showed that both the learning rate and epochs significantly affected the accuracy, and the best-performing hyperparameters achieved an accuracy of more than 98% at classifying mosquitoes, which showed no significant difference from human-level performance. We demonstrated the feasibility of the method to construct a model with the DCNN when deployed externally on mosquitoes in real time.
    Matched MeSH terms: Dengue/transmission
  7. Endersby-Harshman NM, Ali A, Alhumrani B, Alkuriji MA, Al-Fageeh MB, Al-Malik A, et al.
    Parasit Vectors, 2021 Jul 12;14(1):361.
    PMID: 34247634 DOI: 10.1186/s13071-021-04867-3
    BACKGROUND: Dengue suppression often relies on control of the mosquito vector, Aedes aegypti, through applications of insecticides of which the pyrethroid group has played a dominant role. Insecticide resistance is prevalent in Ae. aegypti around the world, and the resulting reduction of insecticide efficacy is likely to exacerbate the impact of dengue. Dengue has been a public health problem in Saudi Arabia, particularly in Jeddah, since its discovery there in the 1990s, and insecticide use for vector control is widespread throughout the city. An alternative approach to insecticide use, based on blocking dengue transmission in mosquitoes by the endosymbiont Wolbachia, is being trialed in Jeddah following the success of this approach in Australia and Malaysia. Knowledge of insecticide resistance status of mosquito populations in Jeddah is a prerequisite for establishing a Wolbachia-based dengue control program as releases of Wolbachia mosquitoes succeed when resistance status of the release population is similar to that of the wild population.

    METHODS: WHO resistance bioassays of mosquitoes with deltamethrin, permethrin and DDT were used in conjunction with TaqMan® SNP Genotyping Assays to characterize mutation profiles of Ae. aegypti.

    RESULTS: Screening of the voltage-sensitive sodium channel (Vssc), the pyrethroid target site, revealed mutations at codons 989, 1016 and 1534 in Ae. aegypti from two districts of Jeddah. The triple mutant homozygote (1016G/1534C/989P) was confirmed from Al Safa and Al Rawabi. Bioassays with pyrethroids (Type I and II) and DDT showed that mosquitoes were resistant to each of these compounds based on WHO definitions. An association between Vssc mutations and resistance was established for the Type II pyrethroid, deltamethrin, with one genotype (989P/1016G/1534F) conferring a survival advantage over two others (989S/1016V/1534C and the triple heterozygote). An indication of synergism of Type I pyrethroid activity with piperonyl butoxide suggests that detoxification by cytochrome P450s accounts for some of the pyrethroid resistance response in Ae. aegypti populations from Jeddah.

    CONCLUSIONS: The results provide a baseline for monitoring and management of resistance as well as knowledge of Vssc genotype frequencies required in Wolbachia release populations to ensure homogeneity with the target field population. Vssc mutation haplotypes observed show some similarity with those from Ae. aegypti in southeast Asia and the Indo-Pacific, but the presence of the triple mutant haplotype in three genotypes indicates that the species in this region may have a unique population history.

    Matched MeSH terms: Dengue/transmission
  8. Ishak IH, Riveron JM, Ibrahim SS, Stott R, Longbottom J, Irving H, et al.
    Sci Rep, 2016 Apr 20;6:24707.
    PMID: 27094778 DOI: 10.1038/srep24707
    Control of Aedes albopictus, major dengue and chikungunya vector, is threatened by growing cases of insecticide resistance. The mechanisms driving this resistance remain poorly characterised. This study investigated the molecular basis of insecticide resistance in Malaysian populations of Ae. albopictus. Microarray-based transcription profiling revealed that metabolic resistance (cytochrome P450 up-regulation) and possibly a reduced penetration mechanism (consistent over-expression of cuticular protein genes) were associated with pyrethroid resistance. CYP6P12 over-expression was strongly associated with pyrethroid resistance whereas CYP6N3 was rather consistently over-expressed across carbamate and DDT resistant populations. Other detoxification genes also up-regulated in permethrin resistant mosquitoes included a glucuronosyltransferase (AAEL014279-RA) and the glutathione-S transferases GSTS1 and GSTT3. Functional analyses further supported that CYP6P12 contributes to pyrethroid resistance in Ae. albopictus as transgenic expression of CYP6P12 in Drosophila was sufficient to confer pyrethroid resistance in these flies. Furthermore, molecular docking simulations predicted CYP6P12 possessing enzymatic activity towards pyrethroids. Patterns of polymorphism suggested early sign of selection acting on CYP6P12 but not on CYP6N3. The major role played by P450 in the absence of kdr mutations suggests that addition of the synergist PBO to pyrethroids could improve the efficacy of this insecticide class and overcome resistance in field populations of Ae. albopictus.
    Matched MeSH terms: Dengue/transmission
  9. Dhanoa A, Hassan SS, Jahan NK, Reidpath DD, Fatt QK, Ahmad MP, et al.
    Infect Dis Poverty, 2018 Jan 16;7(1):1.
    PMID: 29335021 DOI: 10.1186/s40249-017-0384-1
    BACKGROUND: The frequency and magnitude of dengue epidemics continue to increase exponentially in Malaysia, with a shift in the age range predominance toward adults and an expansion to rural areas. Despite this, information pertaining to the extent of transmission of dengue virus (DENV) in the rural community is lacking. This community-based pilot study was conducted to establish DENV seroprevalence amongst healthy adults in a rural district in Southern Malaysia, and to identify influencing factors.

    METHODS: In this study undertaken between April and May 2015, a total of 277 adult participants were recruited from households across three localities in the Sungai Segamat subdistrict in Segamat district. Sera were tested for immunoglobulin G (IgG) (Panbio® Dengue Indirect IgG ELISA/high-titer capture) and immunoglobulin M (IgM) (Panbio®) antibodies. The plaque reduction neutralization test (PRNT) was conducted on random samples of IgG-positive sera for further confirmation. Medical history and a recall of previous history of dengue were collected through interviews, whereas sociodemographic information was obtained from an existing database.

    RESULTS: The overall seroprevalence for DENV infection was 86.6% (240/277) (95% CI: 83-91%). Serological evidence of recent infection (IgM/high-titer capture IgG) was noted in 11.2% (31/277) of participants, whereas there was evidence of past infection in 75.5% (209/277) of participants (indirect IgG minus recent infections). The PRNT assay showed that the detected antibodies were indeed specific to DENV. The multivariate analysis showed that the older age group was significantly associated with past DENV infections. Seropositivity increased with age; 48.5% in the age group of <25 years to more than 85% in age group of >45 years (P 

    Matched MeSH terms: Dengue/transmission
  10. Lee HL, Phong TV, Rohani A
    PMID: 23413698
    This study was conducted to determine the inhibitory effects of ribavirin and hydroxyurea on dengue virus replication in Aedes aegypti mosquitoes. Female Ae. aegypti mosquitoes were infected with dengue-2 virus and fed ribavirin at a dose of 0.3 mg/ml and/or hydroxyurea at a dose of 6 mg/ml via artificial membrane feeding technique. The virus in infected mosquitoes was isolated using C6/36 cell culture. Peroxidase-antiperoxidase (PAP) staining was used to detect dengue-infected C6/36 cells and to quantify the level of infection by determining the presence of infected cells. In mosquitoes treated with ribavirin alone, hydroxyurea alone or both drugs in combination had reductions in dengue infection rates of 87.72, 89.47 and 95.61%, respectively. The mortalities of female Ae. aegypti mosquitoes fed with these drugs were significantly higher than the control. Ribavirin also had an inhibitory effect on the fecundity of female Ae. aegypti mosquitoes.
    Matched MeSH terms: Dengue/transmission
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links