Displaying publications 81 - 100 of 152 in total

Abstract:
Sort:
  1. Ekarizan Shaffie1, Ahmad Kamil Arshad, Ramadhansyah Putra Jaya, Khairil Azman Masri, Wardati Hashim
    MyJurnal
    Moisture susceptibiltiy is one of the common types of pavement failure found in asphaltic pavements.
    Climatic factor such as temperature and moisture has a profound effect on the durability of hot mix
    asphalt pavements. Couple with high traffic loads/stresses made stripping of pavement materials
    inevitable. Thus, it has become necessary to improve the efficiency of the design of hot mix asphalt
    (HMA) for better performance and safe riding comfort. This study investigates and discusses the findings
    on the stripping performance of dense graded Superpave mixes using two type of binder; un-modified
    binder and rubber polymer modified binder (RPM) using Superpave mix design (AASHTO TP4)
    procedure. The RPM binder consists of 4% of both rubber crumb and EVA polymer. Modified Lottman
    and Resilient Modulus tests were used to evaluate the stripping performance in these mixtures and this
    study also documents the effect of different temperature on tensile strength ratio (TSR) and resilient
    modulus ratio (RMR) on the HMA mixtures. Experimental evidences show that the RPM binder mixes
    were found to have significantly improved the resistance to moisture damage compared to unmodified
    binder mixtures. The RPM binder application may able to alleviate problems related to aggregate
    stripping and potholes on our road. Statistical analysis showed good correlation between resilient
    modulus and tensile strength ratio.
    Matched MeSH terms: Construction Materials
  2. Muhammad Aslam, Payam Shafigh, Mohd Zamin Jumaat
    Sains Malaysiana, 2017;46:667-675.
    The benefits of using structural lightweight concrete in construction industry, particularly in high rise buildings, over normal weight concrete are numerous. The main method of producing structural lightweight concrete is the use of lightweight aggregates instead of ordinary aggregates in concrete. Due to the limited resources for natural and artificial lightweight aggregates, the alternative sources for lightweight aggregates should be discovered from industrial wastes. Oil palm shell (OPS) and oil-palm-boiler clinker (OPBC) are two solid wastes from palm oil industry and are available in abundance in tropical regimes. The use of just OPS as coarse lightweight aggregate in concrete mixture has some drawbacks for concrete. The aim of this study was to investigate engineering properties of a lightweight concrete containing both of these aggregates. For this purpose, in this study, 50% (by volume) of OPS was replaced with OPBC in an OPS lightweight concrete. The test results showed that when OPS was substituted with OPBC, significant improvement was observed in the compressive, splitting tensile and flexural strengths. In addition, initial and final water absorption as well as drying shrinkage strain of blended coarse lightweight aggregate concrete were significantly less than OPS concrete.
    Matched MeSH terms: Construction Materials
  3. Shafiq N, Kumar R, Zahid M, Tufail RF
    Materials (Basel), 2019 Jul 17;12(14).
    PMID: 31319615 DOI: 10.3390/ma12142291
    This paper discussed the effects of modified metakaolin (MK) with nano-silica (NS) on the mechanical properties and durability of concrete. In the first phase, trial mixes of concrete were prepared for achieving the desired value of the 28 days compressive strength, and the charge passed in rapid chloride permeability test (RCPT). In the second phase, statistical analysis was performed on the experimental results using the response surface method (RSM). The RSM was applied for optimizing the mix proportions for the required performance by exploiting the relationship between the mix characteristics and the corresponding test results. A blend of 10% MK + 1% NS as part of cement replacement exhibited the highest mechanical properties and durability characteristics of concrete; concrete mix showed that the 28-days compressive strength (CS) was 103 MPa, which was 15% greater than the CS of the control mix without MK or NS. The same mix showed more than 40% higher flexural and split-tensile strength than the control mix; also it resulted in a reduction of 73% in the rapid chloride permeability value. ANOVA technique was used for optimizing the nano-silica and metakaolin content for achieving maximum compressive strength and minimum RCPT value. Statistical analysis using ANOVA technique showed that the maximum compressive strength and lowest RCPT value could be achieved with a blend of 10% MK and 1.55% NS.
    Matched MeSH terms: Construction Materials
  4. Islam R, Nazifa TH, Yuniarto A, Shanawaz Uddin ASM, Salmiati S, Shahid S
    Waste Manag, 2019 Jul 15;95:10-21.
    PMID: 31351595 DOI: 10.1016/j.wasman.2019.05.049
    Associated with the continuing increase of construction activities such as infrastructure projects, commercial buildings and housing programs, Bangladesh has been experiencing a rapid increase of construction and demolition (C&D) waste. Till now, the generation rate of C&D waste has not been well understood or not explicitly documented in Bangladesh. This study aims to provide an approach to estimate C&D waste generation using waste generation rates (WGR) through regression analysis. Furthermore, analyses the economic benefit of recycling C&D waste. The results revealed that WGR 63.74 kg/m2 and 1615 kg/m2 for construction and demolition activities respectively. Approximately, in financial year (FY) 2016, 1.28 million tons (0.149 construction and 1.139 demolition) waste were generated in Dhaka city, of which the three largest proportions were concrete (60%), brick/block (21%) and mortar (9%). After collection they were dumped in either landfills or unauthorized places. Therefore, it can be summarized as: waste is a resource in wrong place. The results of this study indicate that rapid urbanization of Dhaka city would likely experience the peak in the generation of C&D waste. This paper thus designates that C&D waste recycling is an entrepreneurial activity worth venturing into and an opportunity for extracting economic and environmental benefits from waste. The research findings also show that recycling of concrete and brick waste can add economic value of around 44.96 million USD. In addition, recycling of C&D waste leads to important reductions in CO2 emissions, energy use, natural resources and illegal landfills. Therefore, the findings of WGR and economic values provide valuable quantitative information for the future C&D waste management exercises of various stakeholders such as government, industry and academy.
    Matched MeSH terms: Construction Materials
  5. Eliaslankaran Z, Daud NNN, Yusoff ZM, Rostami V
    Materials (Basel), 2021 Feb 28;14(5).
    PMID: 33670914 DOI: 10.3390/ma14051140
    Coastal accretion and erosion are unavoidable processes as some coastal sediments undergo modification and stabilization. This study was conducted to investigate the geotechnical behavior of soil collected from Bagan Lalang coast and treated with lime, cement, and rice husk ash (RHA) to design a low-cost alternative mixture with environmentally friendly characteristics. Laboratory tests were carried out to analyze the physical properties of the soil (Atterberg limits and compaction properties), together with mechanical characteristics (direct shear and unconfined compressive strength (UCS) tests) to determine the effect of different ratios of stabilizer/pozzolan on the coastal soil and the optimum conditions for each mixture. Part of the purpose of this study was also to analyze the shear behavior of the coastal soil and monitor the maximum axial compressive stress that the treated specimens can bear under zero confining pressure. Compared to the natural soil, the soil treated with lime and rice husk ash (LRHA) in the ratio of 1:2 (8% lime content) showed a tremendous increase in shear stress under the normal stress of 200 kPa. The strength parameters such as the cohesion (c) and internal friction angle (ϕ) values showed a significant increase. Cohesion values increased considerably in samples cured for 90 days compared to specimens cured for 7 days with additional LRHA in the ratio of 1:2 (28%).
    Matched MeSH terms: Construction Materials
  6. Wei Chong B, Othman R, Jaya RP, Shu Ing D, Li X, Wan Ibrahim MH, et al.
    Materials (Basel), 2021 Mar 28;14(7).
    PMID: 33800634 DOI: 10.3390/ma14071658
    Image analysis techniques are gaining popularity in the studies of civil engineering materials. However, the current established image analysis methods often require advanced machinery and strict image acquisition procedures which may be challenging in actual construction practices. In this study, we develop a simplified image analysis technique that uses images with only a digital camera and does not have a strict image acquisition regime. Mortar with 10%, 20%, 30%, and 40% pozzolanic material as cement replacement are prepared for the study. The properties of mortar are evaluated with flow table test, compressive strength test, water absorption test, and surface porosity based on the proposed image analysis technique. The experimental results show that mortar specimens with 20% processed spent bleaching earth (PSBE) achieve the highest 28-day compressive strength and lowest water absorption. The quantified image analysis results show accurate representation of mortar quality with 20% PSBE mortar having the lowest porosity. The regression analysis found strong correlations between all experimental data and the compressive strength. Hence, the developed technique is verified to be feasible as supplementary mortar properties for the study of mortar with pozzolanic material.
    Matched MeSH terms: Construction Materials
  7. Ramjan S, Tangchirapat W, Jaturapitakkul C, Chee Ban C, Jitsangiam P, Suwan T
    Materials (Basel), 2021 Mar 20;14(6).
    PMID: 33804759 DOI: 10.3390/ma14061528
    The alkali-silica reaction (ASR) is an important consideration in ensuring the long-term durability of concrete materials, especially for those containing reactive aggregates. Although fly ash (FA) has proven to be useful in preventing ASR expansion, the filler effect and the effect of FA fineness on ASR expansion are not well defined in the present literature. Hence, this study aimed to examine the effects of the filler and fineness of FA on ASR mortar expansion. FAs with two different finenesses were used to substitute ordinary Portland cement (OPC) at 20% by weight of binder. River sand (RS) with the same fineness as the FA was also used to replace OPC at the same rate as FA. The replacement of OPC with RS (an inert material) was carried out to observe the filler effect of FA on ASR. The results showed that FA and RS provided lower ASR expansions compared with the control mortar. Fine and coarse fly ashes in this study had almost the same effectiveness in mitigating the ASR expansion of the mortars. For the filler effect, smaller particles of RS had more influence on the ASR reduction than RS with coarser particles. A significant mitigation of the ASR expansion was obtained by decreasing the OPC content in the mortar mixture through its partial substitution with FA and RS.
    Matched MeSH terms: Construction Materials
  8. Arifin MH, Kayode JS, Ismail MKI, Abdullah AM, Embrandiri A, Nazer NSM, et al.
    MethodsX, 2021;8:101182.
    PMID: 33365262 DOI: 10.1016/j.mex.2020.101182
    A novel methodological approach was developed to quantified the volume of industrial waste desposal (IWD) site, combined with municipal waste materials (MWM), through the integration of a non-invasive, fast, and less expenssive RES2-D Electrical Resistivity Technique (ERT), using Wenner-Schlumberger electrode array geophysical method with Oasis Montaj software. Underground water bearing structures, and the eco-system are being contaminated through seepage of the plumes emanating from the mixtures of the industrial waste materials (IWM), made of moist cemented soil with municipal solid wastes (MSW) dumped at the site. The distribution of the contiminant hazardous plumes emanating from the waste materials' mixtures within the subsurface structural lithological layers was clearly map and delineated within the near-surface structures, using the triplicate technique to collect samples of the soil with the waste mixtures, and the water analysis for the presence of dissolved ions. The deployed method helped to monitor the seepage of the contaminant leachate plumes to the groundwater aquifer units via the ground surface, through the subsurface stratum lithological layers, and hence, estimation of the waste materials' volume was possibly approximated to be 312,000 m3. In summary, the novel method adopted are as presented below:•The novel method is transferable, reproduce-able, and most importantly, it is unambiguous technique for the quantification of environmental, industrial and municipal waste materials.•It helps to map the distribution of the plumes emanating from the waste materials' mixtures within the subsurface structural lithological layers that was clearly delineated within the near-surface structures underlain the study site.•The procedure helped in the monitoring of leachate contaminants plumes seepages into the surface water bodies and the groundwater aquifer units, via the ground surface, through to the porous subsurface stratum lithological layers.
    Matched MeSH terms: Construction Materials
  9. Murali G, Amran M, Fediuk R, Vatin N, Raman SN, Maithreyi G, et al.
    Materials (Basel), 2020 Dec 11;13(24).
    PMID: 33322254 DOI: 10.3390/ma13245648
    Ferrocement panels, while offering various benefits, do not cover instances of low and moderated velocity impact. To address this problem and to enhance the impact strength against low-velocity impact, a fibrous ferrocement panel is proposed and investigated. This study aims to assess the flexural and low-velocity impact response of simply supported ferrocement panels reinforced with expanded wire mesh (EWM) and steel fibers. The experimental program covered 12 different ferrocement panel prototypes and was tested against a three-point flexural load and falling mass impact test. The ferrocement panel system comprises mortar reinforced with 1% and 2% dosage of steel fibers and an EWM arranged in 1, 2, and 3 layers. For mortar preparation, a water-cement (w/c) ratio of 0.4 was maintained and all panels were cured in water for 28 days. The primary endpoints of the investigation are first crack and ultimate load capacity, deflection corresponding to first crack and ultimate load, ductility index, flexural strength, crack width at ultimate load, a number of impacts needed to induce crack commencement and failure, ductility ratio, and failure mode. The finding revealed that the three-layers of EWM inclusion and steel fibers resulted in an additional impact resistance improvement at cracking and failure stages of ferrocement panels. With superior ultimate load capacity, flexural strength, crack resistance, impact resistance, and ductile response, as witnessed in the experiment program, ferrocement panel can be a positive choice for many construction applications subjected to repeated low-velocity impacts.
    Matched MeSH terms: Construction Materials
  10. M Mhaya A, Baghban MH, Faridmehr I, Huseien GF, Abidin ARZ, Ismail M
    Materials (Basel), 2021 Apr 11;14(8).
    PMID: 33920340 DOI: 10.3390/ma14081900
    Recycling of the waste rubber tire crumbs (WRTCs) for the concretes production generated renewed interest worldwide. The insertion of such waste as a substitute for the natural aggregates in the concretes is an emergent trend for sustainable development towards building materials. Meanwhile, the enhanced resistance of the concrete structures against aggressive environments is important for durability, cost-saving, and sustainability. In this view, this research evaluated the performance of several modified rubberized concretes by exposing them to aggressive environments i.e., acid, and sulphate attacks, elevated temperatures. These concrete (12 batches) were made by replacing the cement and natural aggregate with an appropriate amount of the granulated blast furnace slag (GBFS) and WRTCs, respectively. The proposed mix designs' performance was evaluated by several measures, including the residual compressive strength (CS), weight loss, ultrasonic pulse velocity (UPV), microstructures, etc. Besides, by using the available experimental test database, an optimized artificial neural network (ANN) combined with the particle swarm optimization (PSO) was developed to estimate the residual CS of modified rubberized concrete after immersion one year in MgSO4 and H2SO4 solutions. The results indicated that modified rubberized concrete prepared by 5 to 20% WRTCs as a substitute to natural aggregate, provided lower CS and weight lose expose to sulphate and acid attacks compared to control specimen prepared by ordinary Portland cement (OPC). Although the CS were slightly declined at the elevated temperature, these proposed mix designs have a high potential for a wide variety of concrete industrial applications, especially in acid and sulphate risk.
    Matched MeSH terms: Construction Materials
  11. Fahimizadeh M, Diane Abeyratne A, Mae LS, Singh RKR, Pasbakhsh P
    Materials (Basel), 2020 Aug 22;13(17).
    PMID: 32842561 DOI: 10.3390/ma13173711
    Crack formation in concrete is one of the main reasons for concrete degradation. Calcium alginate capsules containing biological self-healing agents for cementitious materials were studied for the self-healing of cement paste and mortars through in vitro characterizations such as healing agent survivability and retention, material stability, and biomineralization, followed by in situ self-healing observation in pre-cracked cement paste and mortar specimens. Our results showed that bacterial spores fully survived the encapsulation process and would not leach out during cement mixing. Encapsulated bacteria precipitated CaCO3 when exposed to water, oxygen, and calcium under alkaline conditions by releasing CO32- ions into the cement environment. Capsule rupture is not required for the initiation of the healing process, but exposure to the right conditions are. After 56 days of wet-dry cycles, the capsules resulted in flexural strength regain as high as 39.6% for the cement mortar and 32.5% for the cement paste specimens. Full crack closure was observed at 28 days for cement mortars with the healing agents. The self-healing system acted as a biological CO32- pump that can keep the bio-agents retained, protected, and active for up to 56 days of wet-dry incubation. This promising self-healing strategy requires further research and optimization.
    Matched MeSH terms: Construction Materials
  12. Jimmus, Melsie Enn, Salinah Dullah
    MyJurnal
    Waste materials from the agricultural and industries can cause problems to human health and the environment when improperly disposed and managed. Due to rapid development in construction, the demand of cement in concrete has increased dramatically. Therefore, wastes such as rice husk, eggshell, glass, fly ash and many more can be used in construction industry to minimize the environmental impact and producing new material on construction industry. Many studies have been conducted as an effort to find replacement materials to substitute cement in concrete.
    Matched MeSH terms: Construction Materials
  13. Jawatin, Easther Lynn Jolly, Salinah Dullah
    MyJurnal
    Waste materials from the agricultural and industries can cause problems to human health and the environment when improperly disposed and managed. Due to rapid development in construction, the demand of cement in concrete has increased dramatically. Therefore, wastes such as rice husk, eggshell, glass, fly ash and many more can be used in construction industry to minimize the environmental impact and producing new material on construction industry. Many studies have been conducted as an effort to find replacement materials to substitute cement in concrete.
    Matched MeSH terms: Construction Materials
  14. NUR FIKRIAH HASHIM, NURAQILAH MOHD ZAINAL, NURAIN JAMIL, NURUL NASUHA MOHD NOR, SURIANI MAT JUSOH
    MyJurnal
    Nowadays, Kenaf fiber is sustainably useful in marine structures and has become one of the materials that may be high in demand as it is light, biodegradable and environmental friendly. This study investigates the effect of fiber percentage on compressive strength of fiber reinforced concrete (FRC) and the relationship between compressive strength and time of FRC immersion in seawater. FRC concrete cubes were prepared using four different percentage of fiber (0%, 1.5%, 3.0% and 4.5%). These FRC were immersed in seawater for 7, 14 and 21 days for three consecutive weeks. Based on the experiment, it was found that there was improvement in compressive strength of FRC when compared to plain cement concrete. The results showedthat 3.0% of KF to cement matrix concrete determined the highest compressive strength of 205.43 Pa while 0% of KF fiber to cement concrete matrix (control specimen) showed the lowest compressive strength of 158.28 Pa. Also the addition of Kenaf fiber to cement concrete decreased the seawater absorption more than concrete with absolutely 0% of KF fiber to cement concrete (control specimen). In conclusion, the results did show significant improvement and a consistent trend on strength with the addition of FRC. This study also revealed that the percentage of water absorption was on the increase for 0, 7 and 14 days and become constant after day 21. This is due to manufacturing defects that occurred which block the water from entering the material and making the material absorb less water.
    Matched MeSH terms: Construction Materials
  15. Ahmad Saat, Zaini Hamzah, Zaharidah Abu Bakar
    MyJurnal
    Being an imperative material for man either used as building materials, pottery or as components in material industry and technology, knowledge of clays elemental contents is important. In the present study ten clay samples obtained from various locations in North-West Peninsular Malaysia were used. Majority of the clays were economically manufactured to be used as building materials or pottery. The objective of study was to determine the main elemental contents of the samples, and relate the results to the types of minerals, as well as to compare them with clays from other studies. In the study X-ray Fluorescence (XRF) coupled to samples dilution method and standard calibration samples was used. The elements detected in the study were Si, Al, Fe, Ti, K and Ca. Depending on locations, the percentage concentration ranged between 24.8 – 32.4 for Si, 10.8 – 19.0 for Al, 0.09 – 2.12 for Fe, 0.08 – 1.13 for Ti, 0.45 – 3.39 for K and trace amount of Ca and P. However, Mg that normally found in typical clay was not found in the studied samples. Comparing the oxide of the major elements with other studies, it was found that the clay samples contained mixtures of kaolinite (two-layered structure) and illite (three-layered structure).
    Matched MeSH terms: Construction Materials
  16. Na’im Syauqi Hamzah, Redzuwan Yahaya, Amran Ab. Majid, Muhammad Samudi Yasir, Ismail Bahari
    MyJurnal
    At present, soil and mineral based building material such as bricks are one of the main components in building construction in Malaysia. This building material is a direct source of radiation exposure since it contains naturally occurring radioactive materials (NORM). In this study, clay brick samples used were obtained from 7 factories in Selangor and Johore, Malaysia. The activity concentrations of 226 Ra, 232 Th and 40 K in these samples of clay bricks were determined using a comparative method and was analysed using gamma spectrometry with HPGe detector. The mean values of activity concentrations for 226 Ra, 232 Th and 40 K were found to be in the range of 39.04 ± 0.88 Bqkg-1 - 73.61 ± 5.32 Bqkg-1, 43.38 ± 2.60 Bqkg-1 - 73.45 ± 1.51 Bqkg-1, and 381.54 ± 11.39 Bqkg-1 - 699.63 ± 15.82 Bqkg-1, respectively. The radiation hazard of NORM in the samples was estimated by calculating the radium equivalent activity (Raeq), external hazard index (Hex) and internal hazard index (Hin). Radium equivalent activity (Raeq) determined was in the range of 151.90 Bqkg-1 - 194.22 Bqkg-1 which is lower than the limit of 370 Bqkg-1 (equivalent to 1.5 mSvyr-1 ) recommended in the NEA-OECD report in 1979, whereas external hazard index (Hex) and internal hazard index (Hin) were between 0.20 – 0.26 and 0.52 - 0.71 respectively. The annual effective dose rate exposure to a dweller received from the clay bricks was calculated to be in the range of 0.35 ± 0.18 mSvy-1 - 0.43 ± 0.09 mSvy-1.
    Matched MeSH terms: Construction Materials
  17. Ahmed, Al-Halemi, Jaafar, M.S.
    MyJurnal
    Radon-222 emanation from selected locally produced samples of building materials, used in Malaysia were measured using the Professional Continuous Radon Monitor Model 1027, which is a patented electronic detecting-junction photodiode sensor to measure the concentration of radon gas. Each sample was placed for 72 hours inside a 3.11 x 10 -2 m 3 sealed container. It was found that the average radon concentration Bqm -3 of air for concrete bricks, concrete brick with cemented coatings, concrete brick with cemented coatings and paint samples were, 303.7 Bq/m 3, 436.6 Bqm -3, and 410.7 Bqm -3, respectively. (Bqm -3 ) for brown clay brick, brown clay brick with cemented coatings, brown clay brick with cemented coatings and paint were 166.5 Bqm -3, 166.5 Bqm -3, and 148 Bqm -3, respectively. (Bqm -3 ) for sample of compact ceramic tile was 0 Bqm -3. The findings show that concrete brick samples are important source of radon emanation, while brown clay brick have been accepted as the recommendation of the U.S. Environmental Protection Agency (EPA), and ceramic tiles had no emanation of radon gas due to their compact surface, or the glazed layer created on the tile surface during the manufacturing process, which blocks radon emanation. A positive correlation between radon emanation and radium content has been observed for both brown clay brick and concrete brick samples whereas a negative correlation for ceramic tile has been observed. Consequently from the findings, in order to reduce radon emanation and radon exposure in house dwellings and in addition to EPA recommendation of sealed cracks and established good ventilation, we recommend concrete walls to be painted and concrete floors to be paved with ceramic tiles.
    Matched MeSH terms: Construction Materials
  18. Ainul Haezah Noruzman, Mohammad Ismail, Taliat Ola Yusuf, Parham Forouzani
    MyJurnal
    The volume of waste generated from surface coating industries is of global concern. The disposal of this waste in the form of effluent has put enormous pressure on land and also poses as a health hazard when it leaches into soil and underground water. The study aims to examine the utilization of vinyl acetate effluents from water based paint factories as an admixture in concrete. Concrete specimens containing 0%, 2.5%, 5% and 10% of vinyl acetate effluents by weight of cement were prepared. The specimens were tested for drying shrinkage for 28 days and porosity was tested using mercury intrusion porosimetry. Findings show that concrete containing various proportions of vinyl acetate effluents manifests higher shrinkage behaviour compared to the control item. An investigation of pore size distribution reveals that polymer effluents have particles size larger than 50 nm which are categorize as macroporous in accordance to IUPAC classification. It can be concluded that adding polymer vinyl acetate effluents affects concrete deformation due to the condition of its pore structures. The utilization of this material may provide beneficial effect in terms of the durability performance of concrete and minimize environmental pollution.
    Matched MeSH terms: Construction Materials
  19. Noor, N.M., Ahmad, M.H., Othman, N.H.
    MyJurnal
    The importance of the performance of concrete cannot be neglected since it is the early indicator of its physical and mechanical properties. It became more important when material with different physical properties than normal material such as rubber tire was used as concrete constituent. This paper presented apart of research result conducted on mortar and concrete with crumb rubber. Crumb rubber was replaced at 10%, 15% and 20% as sand replacement by volume. In addition, ordinary Portland cement was added to silica fume at 10% and 15% by weight. The properties measured in this study are air content and workability test. As for workability, superplasticizers were constantly used at 1% dosage for all mortar mixture, and 0.5% to 0.7% for concrete mixture. The air content was set at 4% to 6% and mortar flow test was conducted on a steel plate, shocked 15 times in 15 seconds and concrete slump test was carried out using slump cone equipment. Pressure method was used to measure air content. All mixes were done in a controlled room temperature. Results showed that when CR was added in the mixture segregation was observed in mortar requiring a high dose of superplasticizer to be added to improve the workability while air-modifying agent was used to reduce the mortar air content. In concrete mixture, low dosage of superplasticizers was required for workability and air-entrained agent was injected into the mixture to increase the air content between 4%-6%.
    Matched MeSH terms: Construction Materials
  20. Nor Umairah Abd Rahim, Mohd Fadzil bin Arshad
    MyJurnal
    Ordinary Portland Cement (OPC) is widely used by the construction industry. Research to find the precise proportion of cement replacement material which can be used to produce a product called Ternary Blended Cement (TBC) is not new. The objective of this study is to determine the effect of POFA and SF as TBC on the heat of hydration and compressive strength of mortar. Before producing TBC, specimens using BBC is required. Mix design proportion for POFA and SF are 5%, 10%, 15%, and 20%. Mix design proportion TBC are chose from the highest compressive strength value achieved at 7 days of curing. This research found the heat of hydration of TBC containing 20% POFA and 5% SF is high in the beginning to drop at the end of hydration process in addition to producing lower compressive strength.
    Matched MeSH terms: Construction Materials
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links