METHODS: A total of 28 articular cartilage samples from adult cats (14 OA and 14 normal), 10 synovial membranes from adult cats (five OA and five normal) and three cartilage samples from 9-week-old fetal cats were used. The presence of PAR2 and matriptase in the cartilage and synovial membrane of the adult samples was detected by immunohistochemical (IHC) staining, while real-time PCR was used for mRNA expression analyses in all samples.
RESULTS: PAR2 was detected in all OA and normal articular cartilage and synovial membrane samples but confined to only a few superficial chondrocytes in the normal samples. Matriptase was only detected in OA articular cartilage and synovial membrane samples. PAR2 and matriptase mRNA expression were, however, detected in all cartilage and synovial membrane samples. PAR2 and matriptase mRNA expression levels in OA articular cartilage were five (P <0.001) and 3.3 (P <0.001) times higher than that of the healthy group, respectively. There was no significant difference (P = 0.05) in the OA synovial membrane PAR2 and matriptase mRNA expression compared with the normal samples.
CONCLUSIONS AND RELEVANCE: Detection of PAR2 and matriptase proteins and gene expression in feline articular tissues is a novel and important finding, and supports the hypothesis that serine proteases are involved in the pathogenesis of feline OA. The consistent presence of PAR2 and matriptase protein in the cytoplasm of OA chondrocytes suggests a possible involvement of proteases in cartilage degradation. Further investigations into the PAR2 and matriptase pathobiology could enhance our understanding of the proteolytic cascades in feline OA, which might lead to the development of novel therapeutic strategies.
METHODS: A total of 392 ticks and 248 fleas were collected from 401 infested animals (i.e. 271 dogs and 130 cats) from China, Taiwan, Indonesia, Malaysia, Singapore, Thailand, the Philippines and Vietnam, and molecularly screened for the presence of pathogens. Ticks were tested for Rickettsia spp., Anaplasma spp., Ehrlichia spp., Babesia spp. and Hepatozoon spp. while fleas were screened for the presence of Rickettsia spp. and Bartonella spp.
RESULT: Of the 392 ticks tested, 37 (9.4%) scored positive for at least one pathogen with Hepatozoon canis being the most prevalent (5.4%), followed by Ehrlichia canis (1.8%), Babesia vogeli (1%), Anaplasma platys (0.8%) and Rickettsia spp. (1%) [including Rickettsia sp. (0.5%), Rickettsia asembonensis (0.3%) and Rickettsia felis (0.3%)]. Out of 248 fleas tested, 106 (42.7%) were harboring at least one pathogen with R. felis being the most common (19.4%), followed by Bartonella spp. (16.5%), Rickettsia asembonensis (10.9%) and "Candidatus Rickettsia senegalensis" (0.4%). Furthermore, 35 Rhipicephalus sanguineus ticks were subjected to phylogenetic analysis, of which 34 ticks belonged to the tropical and only one belonged to the temperate lineage (Rh. sanguineus (sensu stricto)).
CONCLUSION: Our data reveals the circulation of different VBPs in ticks and fleas of dogs and cats from Asia, including zoonotic agents, which may represent a potential risk to animal and human health.
OBJECTIVES: To evaluate thermotolerance and antifungal susceptibility of feline Malaysian Sporothrix isolates, compare microdilution (MD) and E-test results, and investigate changes in susceptibility during azole therapy.
METHODS: Sporothrix schenckii sensu stricto was isolated from 44 cats. Thermotolerance was determined via culture at 37°C for 7 days. Susceptibility to itraconazole (ITZ), ketoconazole (KTZ) and terbinafine (TRB) was assessed in 40 isolates by MD; to amphotericin B (AMB), KTZ, ITZ, fluconazole (FLC) and posaconazole (POS) by E-test. Results were statistically compared by Pearson's Product Moment. In eight ketoconazole treated cats, susceptibility testing to itraconazole and ketoconazole was repeated every two months for six months.
RESULTS: Thermotolerance was observed in 36 of 44 (82%) isolates. Assuming that isolates growing at antifungal concentrations ≥4 mg/mL were resistant, all were resistant on E-test to FLC and AMB, 11 (28%) to POS, 6 (15%) to ITZ and 1 (3%) to KTZ. On MD, 27 of 40 (68%) were resistant to TRB, 2 (5%) to ITZ and 3 (8%) to KTZ. There was no correlation between E-test and MD results (KTZ r = 0.10, P = 0.54, and ITZ r = 0.11, P = 0.48). MD values for ITZ and KTZ did not exceed 4 mg/L during KTZ therapy.
CONCLUSION: The majority of feline isolates in Malaysia are thermosensitive. Lack of correlation between E-test and MD suggests that the E-test is unreliable to test antifungal susceptibility for Sporothrix spp. compared to MD. KTZ was the antifungal drug with the lowest MIC. Prolonged KTZ administration may not induce changes in antifungal susceptibility.