METHODS: Subjects aged 55 years and above from the Malaysian Elders Longitudinal Research (MELoR) study with available information on vision and Montreal Cognitive Assessment (MoCA) scores were included. Data were obtained through a home-based interview and hospital-based health check by trained researchers. Visual acuity (VA) was assessed with logMAR score with vision impairment defined as VA 6/18 or worse in the better-seeing eye. Cognition was evaluated using the MoCA-Blind scoring procedure. Those with a MoCA-Blind score of <19/22 were considered to have cognitive impairment.
RESULTS: Data was available for 1144 participants, mean (SD) age = 68.57 (±7.23) years. Vision impairment was present in 143 (12.5 %) and 758 (66.3 %) had MoCA-Blind score of <19. Subjects with vision impairment were less likely to have a MoCA-Blind score of ≥19 (16.8 % vs 36.2 %, p < 0.001). Vision impairment was associated with poorer MoCA-Blind scores after adjustments for age, gender, and ethnicity (β = 2.064; 95 % CI, -1.282 to 3.320; P = 0.003). In those who had > 6 years of education attainment, vision impairment was associated with a significant reduction of cognitive function and remained so after adjustment for age and gender (β = 1.863; 95 % CI, 1.081-3.209; P = 0.025).
CONCLUSION: Our results suggest that vision impairment correlates with cognitive decline. Therefore, maintaining good vision is an important interventional strategy for preventing cognitive decline in older adults.
METHODS: All infants requiring ventilation in the neonatal intensive care unit of a tertiary hospital in Malaysia during the 4-month study period were eligible to enter this randomised controlled trial. All participants were randomised into two groups: experimental and control group. The main outcome measure was malposition of the ETT (requiring adjustment), as seen on the chest X-ray performed within 1 h after intubation. Tube placement was assessed by two neonatologists, blinded to the allocation.
RESULTS: One hundred and ten infants were randomised, 55 in each group. The ETT was malpositioned in 13 of 55 infants (23%) for the experimental group and 22 of 55 infants (40%) in the control group (P = 0.06).
CONCLUSION: In the experimental group, fewer infants showed a need for tube adjustment than in the control group. While a larger study may be necessary to show statistical significance, the difference shown in this study may be large enough to be of clinical significance.
METHODS: In this cross-sectional study, 30 severe glaucoma patients, 30 mild glaucoma patients and 30 age-matched controls were recruited. All subjects underwent standard automated perimetry, RNFL analysis and 3 T MRI examinations. Glaucoma patients were classified according to the Hodapp-Anderson-Parish classification. Pearson's correlation coefficient was used to correlate ON volume with RNFL, and receiver operating curve (ROC) analysis was performed to determine the sensitivity and specificity of ON volume in detecting glaucoma severity.
RESULTS: Optic nerve volume was significantly lower in both the left and right eyes of the severe glaucoma group (168.70 ± 46.28 mm(3); 167.40 ± 45.36 mm(3)) than in the mild glaucoma group (264.03 ± 78.53 mm(3); 264.76 ± 78.88 mm(3)) and the control group (297.80 ± 71.45 mm(3); 296.56 ± 71.02 mm(3)). Moderate correlation was observed between: RNFL thickness and ON volume (r = 0.51, p <0.001), and in mean deviation of visual field and optic nerve volume (r = 0.60, p
DESIGN: Randomized, prospective, double-blinded study.
SETTING: University-based tertiary referral center.
PATIENTS: Thirty claustrophobic adults with American Society of Anesthesiologists physical status I and II who were planned for MRI.
INTERVENTIONS: Patients were randomly assigned to target-controlled infusion propofol or dexmedetomidine loading followed by maintenance dose for procedural sedation.
MEASUREMENTS AND MAIN RESULTS: The primary end point was adequate reduction in patient anxiety levels to allow successful completion of the MRI sequence. Both methods of sedation adequately reduced anxiety levels in visual analog scale scores and Spielberger Strait Test Anxiety Inventory (P
METHODS: 85 participants (43 fallers, 42 non-fallers) were evaluated with conventional MRI and diffusion tensor imaging (DTI) sequences of the brain. DTI metrics were obtained from selected WMT using tract-based spatial statistics (TBSS) method. This was followed by binary logistic regression to investigate the clinical variables that could act as confounding elements on the outcomes. The TBSS analysis was then repeated, but this time including all significant predictor variables from the regression analysis as TBSS covariates.
RESULTS: The mean diffusivity (MD) and axial diffusivity (AD) and to a lesser extent radial diffusivity (RD) values of the projection fibers and commissural bundles were significantly different in fallers (p < 0.05) compared to non-fallers. However, the final logistic regression model obtained showed that only functional reach, white matter lesion volume, hypertension and orthostatic hypotension demonstrated statistical significant differences between fallers and non-fallers. No significant differences were found in the DTI metrics when taking into account age and the four variables as covariates in the repeated analysis.
CONCLUSION: This DTI study of 85 subjects, do not support DTI metrics as a singular factor that contributes independently to the fall outcomes. Other clinical and imaging factors have to be taken into account.
MATERIALS AND METHODS: Sixteen children with GDD underwent magnetic resonance imaging (MRI) and cross-sectional DTI. Formal developmental assessment of all GDD patients was performed using the Mullen Scales of Early Learning. An automated processing pipeline for the WMT assessment was implemented. The DTI-derived metrics of the children with GDD were compared to healthy children with normal development (ND).
RESULTS: Only two out of the 17 WMT demonstrated significant differences (p<0.05) in DTI parameters between the GDD and ND group. In the uncinate fasciculus (UF), the GDD group had lower mean values for fractional anisotropy (FA; 0.40 versus 0.44), higher values for mean diffusivity (0.96 versus 0.91×10-3 mm2/s) and radial diffusivity (0.75 versus 0.68×10-3 mm2/s) compared to the ND group. In the superior cerebellar peduncle (SCP), mean FA values were lower for the GDD group (0.38 versus 0.40). Normal myelination pattern of DTI parameters was deviated against age for GDD group for UF and SCP.
CONCLUSION: The UF and SCP WMT showed microstructural changes suggestive of compromised white matter maturation in children with GDD. The DTI metrics have potential as imaging markers for inadequate white matter maturation in GDD children.
MATERIAL AND METHODS: Forty-eight subjects (23 complicated mTBI [cmTBI] patients, 12 uncomplicated mTBI [umTBI] patients, and 13 controls) underwent magnetic resonance imaging scan with additional single voxel spectroscopy sequence. Magnetic resonance imaging scans for patients were done at an average of 10 hours (standard deviation 4.26) post injury. The single voxel spectroscopy adjacent to side of injury and noninjury regions were analysed to obtain absolute concentrations and ratio relative to creatine of the neurometabolites. One-way analysis of variance was performed to compare neurometabolite concentrations of the three groups, and a correlation study was done between the neurometabolite concentration and Glasgow Coma Scale.
RESULTS: Significant difference was found in ratio of N-acetylaspartate to creatine (NAA/Cr + PCr) (χ2(2) = 0.22, P N-acetylaspartylglutamate (NAAG) also shows significant differences in both the absolute concentration (NAA + NAAG) and ratio to creatine (NAA + NAAG/Cr + PCr) between groups (χ2(2) = 4.03, P
METHODS: Sixty-one patients with mTBI (Glasgow Coma Scale score 13-15) were recruited prospectively, categorized according to baseline computed tomography findings, and subjected to neuropsychological assessment at initial admission (n = 61) as well as at a 6-month follow-up (n = 30). The paired t test, Cohen's d effect size calculation, and repeated-measures analysis of variance were used to establish the differences between the 2 groups in terms of neuropsychological performance.
RESULTS: A trend toward poorer neuropsychological performance among the patients with complicated mTBI was observed during admission; however, performance in this group improved over time. In contrast, the uncomplicated mTBI group showed slower recovery, especially in tasks of memory, visuospatial processing, and executive functions, at follow-up.
CONCLUSIONS: Our findings suggest that despite the broad umbrella designation of mTBI, the current classification schemes of injury severity for mild neurotrauma should be revisited. They also raise questions about the clinical relevance of both traumatic focal lesions and the absence of visible traumatic lesions on brain imaging studies in patients with milder forms of head trauma.
MATERIALS AND METHODS: This was a longitudinal study of eight IGHD subjects (2 males, 6 females) with a mean age of 11.1 ± 0.8 years and age-matched control groups. The pituitary gland, basal ganglia and limbic structures volumes were obtained using 3T MRI voxel-based morphology. The left-hand bone age was assessed using the Tanner-Whitehouse method. Follow-up imaging was performed after an average of 1.8 ± 0.4 years on rhGH.
RESULTS: Subjects with IGHD had a smaller mean volume of the pituitary gland, right thalamus, hippocampus, and amygdala than the controls. After rhGH therapy, these volumes normalized to the age-matched controls. Corpus callosum of IGHD subjects had a larger mean volume than the controls and did not show much volume changes in response to rhGH therapy. There were changes towards normalization of bone age deficit of IGHD in response to rhGH therapy.
CONCLUSION: The pituitary gland, hippocampus, and amygdala volumes in IGHD subjects were smaller than age-matched controls and showed the most response to rhGH therapy. Semi-automated volumetric assessment of pituitary gland, hippocampus, and amygdala using MRI may provide an objective assessment of response to rhGH therapy.