METHOD: C-reactive Protein (CRP) is a commonly used inflammatory marker in orthopedic surgery and has proven to be a valuable biomarker for diagnosing and monitoring infections. Specifically, CRP aids in the early identification of postoperative infections. This research work has focused on developing a highly sensitive CRP biosensor using iron oxide nanomaterial-modified dielectric sensors.
RESULT: Gold Urchin (GU)-conjugated aptamers and antibodies were used as probes and attached to the electrode via amine linkers. The aptamer-GU-antibody-modified electrode detected CRP at concentrations as low as 1 pg/mL, with an R2 value of 0.9942. Furthermore, CRP-spiked serum exhibited an increase in current response at all concentrations of CRP, indicating selective detection of CRP. Additionally, control experiments using complementary sequences of the aptamer, relevant proteins, and non-immune antibodies did not enhance the current responses, confirming the specific identification of CRP.
CONCLUSION: The sensing strategy has enabled the detection of CRP at its lowest levels, facilitating the identification of infections during orthopedic surgery and subsequent treatment.
METHODS: Genetic analysis was performed in 42 patients with MODY aged 1 month to 18 years among a cohort of 759 patients with diabetes, identified with the following four clinical criteria: age of diagnosis ≤18 years; negative pancreatic autoantibodies; family history of diabetes; or persistently detectable C-peptide; or diabetes associated with extrapancreatic features. GCK gene mutations were first screened by Sanger sequencing. GCK mutation-negative patients were further analyzed by WES.
RESULTS: Mutations were identified in 24 patients: 20 mutations in GCK, 1 in HNF4A, 1 in INS, 1 in ABCC8, and a 17q12 microdeletion. Four previously unpublished novel GCK mutations: c.1108G>C in exon 9, and c.1339C>T, c.1288_1290delCTG, and c.1340_1343delGGGGinsCTGGTCT in exon 10 were detected. WES identified a novel missense mutation c.311A>G in exon 3 in the INS gene, and copy number variation analysis detected a 1.4 Mb microdeletion in the long arm of the chromosome 17q12 region. Compared with mutation-negative subjects, the mutation-positive subjects had lower hemoglobin A1c and initial blood glucose levels.
CONCLUSIONS: Most MODY cases in this study were due to GCK mutations, which is in contrast to previous reports in Chinese patients. Diabetes associated with extrapancreatic features should be a clinical criterion for MODY genetic analysis. Mutational analysis by WES provided a precise diagnosis of MODY subtypes. Moreover, WES can be useful for detecting large deletions in coding regions in addition to point mutations.
METHOD: This study proposed a single-scale multi-input convolutional neural network (SSMICNN) method to classify ERP signals between aMCI patients with T2DM and the control group. Firstly, the 18-electrode ERP signal on alpha, beta, and theta frequency bands was extracted by using the fast Fourier transform, and then the mean, sum of squares, and absolute value feature of each frequency band were calculated. Finally, these three features are converted into multispectral images respectively and used as the input of the SSMICNN network to realize the classification task.
RESULTS: The results show that the SSMICNN can fuse MSI formed by different features, SSMICNN enriches the feature quantity of the neural network input layer and has excellent robustness, and the errors of SSMICNN can be simultaneously transmitted to the three convolution channels in the back-propagation phase. Comparison with Existing Method(s): SSMICNN could more effectively identify ERP signals from aMCI with T2DM from the control group compared to existing classification methods, including convolution neural network, support vector machine, and logistic regression.
CONCLUSIONS: The combination of SSMICNN and MSI can be used as an effective biological marker to distinguish aMCI patients with T2DM from the control group.
AIM OF THE STUDY: The study is aimed to investigate the anti-depressant effect and the molecular mechanism of G. elata in vitro and in vivo using PC12 cells and zebrafish model, respectively.
MATERIAL AND METHODS: Network pharmacology was performed to explore the potential active ingredients and action targets of G. elata Blume extracts (GBE) against depression. The cell viability and proliferation were determined by MTT and EdU assay, respectively. TUNEL assay was used to examine the anti-apoptotic effect of GBE. Immunofluorescence and Western blot were used to detect the protein expression level. In addition, novel tank diving test was used to investigate the anti-depressant effect in zebrafish depression model. RT-PCR was used to analyze the mRNA expression levels of genes.
RESULTS: G. elata against depression on the reticulon 4 receptors (RTN4R) and apoptosis-related targets, which were predicted by network pharmacology. Furthermore, GBE enhanced cell viability and inhibited the apoptosis in PC12 cells against CORT treatment. GBE relieved depression-like symptoms in adult zebrafish, included increase of exploratory behavior and regulation of depression related genes. Mechanism studies showed that the GBE inhibited the expression of RTN4R-related and apoptosis-related genes.
CONCLUSION: Our studies show the ameliorative effect of G. elata against depression. The mechanism may be associated with the inhibition of RTN4R-related and apoptosis pathways.
METHOD: Literature search was performed. The clinical features and molecular characteristics of Chinese patients with sitosterolemia were analysed. Four children with sitosterolemia and the treatment experience were described.
RESULTS: Fifty-five patients with sitosterolemia have been reported in China. These patients were aged from 3 months to 67 years at diagnosis, and the median was 8 years of age. Several complications, such as xanthomas in 47 patients (85%), thrombocytopenia in 17 patients (31%), anemia in 14 patients (25%), and cardiovascular damage in 12 patients (22%), were observed. Thirty-nine patients (71%) exhibited mutations in the ABCG5 gene, 15 patients (27%) showed mutations in ABCG8, and variations in both genes occurred in one patient (2%). A patient with two clinically rare diseases, namely, sitosterolemia and glycogen storage disease type VI (GSD VI)), is reported here for the first time. The four reported patients were treated with low cholesterol and phytosterol-limited diet alone or combined with cholestyramine. Even though decreases were observed for total plasma cholesterol (TC) and low-density-lipoprotein cholesterol (LDL-C), and these levels were as low as normal in some patients, the levels of plant sterols remained above the normal range. However, TC, LDL-C and plant sterol levels remained at high levels in patients treated with a control diet control only.
CONCLUSIONS: The analysis reveals that different from Caucasians carrying mainly variations in ABCG8, most Chinese patients have mutations in the ABCG5 gene, and Arg446Ter, Gln251Ter, anArg389His might be hot-spot mutations in Chinese patients. The current survey provides clinical data to enable the development of a standardized protocol for the diagnosis and treatment of sitosterolemia in China.
METHODS: Expression of SPRY genes in human and mice PDAC was analyzed using The Cancer Genome Atlas and Gene Expression Omnibus datasets, and by immunohistochemistry analysis. Gain-of-function, loss-of-function of Spry1 and orthotopic xenograft model were adopted to investigate the function of Spry1 in mice PDAC. Bioinformatics analysis, transwell and flowcytometry analysis were used to identify the effects of SPRY1 on immune cells. Co-immunoprecipitation and K-ras4B G12V overexpression were used to identify molecular mechanism.
RESULTS: SPRY1 expression was remarkably increased in PDAC tissues and positively associated with poor prognosis of PDAC patients. SPRY1 knockdown suppressed tumor growth in mice. SPRY1 was found to promote CXCL12 expression and facilitate neutrophil and macrophage infiltration via CXCL12-CXCR4 axis. Pharmacological inhibition of CXCL12-CXCR4 largely abrogated the oncogenic functions of SPRY1 by suppressing neutrophil and macrophage infiltration. Mechanistically, SPRY1 interacted with ubiquitin carboxy-terminal hydrolase L1 to induce activation of nuclear factor κB signaling and ultimately increase CXCL12 expression. Moreover, SPRY1 transcription was dependent on KRAS mutation and was mediated by MAPK-ERK signaling.
CONCLUSION: High expression of SPRY1 can function as an oncogene in PDAC by promoting cancer-associated inflammation. Targeting SPRY1 might be an important approach for designing new strategy of tumor therapy.