Displaying publications 81 - 99 of 99 in total

Abstract:
Sort:
  1. Hosseini S, Azari P, Farahmand E, Gan SN, Rothan HA, Yusof R, et al.
    Biosens Bioelectron, 2015 Jul 15;69:257-64.
    PMID: 25765434 DOI: 10.1016/j.bios.2015.02.034
    Electrospun polyhydroxybutyrate (PHB) fibers were dip-coated by polymethyl methacrylate-co-methacrylic acid, poly(MMA-co-MAA), which was synthesized in different molar ratios of the monomers via free-radical polymerization. Fabricated platfrom was employed for immobilization of the dengue antibody and subsequent detection of dengue enveloped virus in enzyme-linked immunosorbent assay (ELISA). There is a major advantage for combination of electrospun fibers and copolymers. Fiber structre of electrospun PHB provides large specific surface area available for biomolecular interaction. In addition, polymer coated parts of the platform inherited the premanent presence of surface carboxyl (-COOH) groups from MAA segments of the copolymer which can be effectively used for covalent and physical protein immobilization. By tuning the concentration of MAA monomers in polymerization reaction the concentration of surface -COOH groups can be carefully controlled. Therefore two different techniques have been used for immobilization of the dengue antibody aimed for dengue detection: physical attachment of dengue antibodies to the surface and covalent immobilization of antibodies through carbodiimide chemistry. In that perspective, several different characterization techniques were employed to investigate the new polymeric fiber platform such as scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle (WCA) measurement and UV-vis titration. Regardless of the immobilization techniques, substantially higher signal intensity was recorded from developed platform in comparison to the conventional ELISA assay.
  2. Thio TH, Ibrahim F, Al-Faqheri W, Moebius J, Khalid NS, Soin N, et al.
    Lab Chip, 2013 Aug 21;13(16):3199-209.
    PMID: 23774994 DOI: 10.1039/c3lc00004d
    A technique known as thermo-pneumatic (TP) pumping is used to pump fluids on a microfluidic compact disc (CD) back towards the CD center against the centrifugal force that pushes liquids from the center to the perimeter of the disc. Trapped air expands in a TP air chamber during heating, and this creates positive pressure on liquids located in chambers connected to that chamber. While the TP air chamber and connecting channels are easy to fabricate in a one-level CD manufacturing technique, this approach provides only one way pumping between two chambers, is real-estate hungry and leads to unnecessary heating of liquids in close proximity to the TP chamber. In this paper, we present a novel TP push and pull pumping method which allows for pumping of liquid in any direction between two connected liquid chambers. To ensure that implementation of TP push and pull pumping also addresses the issue of space and heating challenges, a multi-level 3D CD design is developed, and localized forced convection heating, rather than infra-red (IR) is applied. On a multi-level 3D CD, the TP features are placed on a top level separate from the rest of the microfluidic processes that are implemented on a lower separate level. This approach allows for heat shielding of the microfluidic process level, and efficient usage of space on the CD for centrifugal handling of liquids. The use of localized forced convection heating, rather than infra-red (IR) or laser heating in earlier implementations allows not only for TP pumping of liquids while the CD is spinning but also makes heat insulation for TP pumping and other fluidic functions easier. To aid in future implementations of TP push and pull pumping on a multi-level 3D CD, study on CD surface heating is also presented. In this contribution, we also demonstrate an advanced application of pull pumping through the implementation of valve-less switch pumping.
  3. Hosseini S, Aeinehvand MM, Uddin SM, Benzina A, Rothan HA, Yusof R, et al.
    Sci Rep, 2015;5:16485.
    PMID: 26548806 DOI: 10.1038/srep16485
    The application of microfluidic devices in diagnostic systems is well-established in contemporary research. Large specific surface area of microspheres, on the other hand, has secured an important position for their use in bioanalytical assays. Herein, we report a combination of microspheres and microfluidic disk in a unique hybrid platform for highly sensitive and selective detection of dengue virus. Surface engineered polymethacrylate microspheres with carefully designed functional groups facilitate biorecognition in a multitude manner. In order to maximize the utility of the microspheres' specific surface area in biomolecular interaction, the microfluidic disk was equipped with a micromixing system. The mixing mechanism (microballoon mixing) enhances the number of molecular encounters between spheres and target analyte by accessing the entire sample volume more effectively, which subsequently results in signal amplification. Significant reduction of incubation time along with considerable lower detection limits were the prime motivations for the integration of microspheres inside the microfluidic disk. Lengthy incubations of routine analytical assays were reduced from 2 hours to 5 minutes while developed system successfully detected a few units of dengue virus. Obtained results make this hybrid microsphere-microfluidic approach to dengue detection a promising avenue for early detection of this fatal illness.
  4. Muniandy S, Teh SJ, Thong KL, Thiha A, Dinshaw IJ, Lai CW, et al.
    Crit Rev Anal Chem, 2019;49(6):510-533.
    PMID: 30648398 DOI: 10.1080/10408347.2018.1561243
    The development of easy to use, rapid and sensitive methods for direct detection of foodborne bacterial pathogens has become significantly important due to their impact on human health. In recent years, carbon nanomaterials have been adapted in the fabrication of electrochemical biosensors due to their exceptional combination of intrinsic properties such as high conductivity, stability and biocompatibility that render them as a promising candidate for bio-sensing material. The scope of this review is to provide a brief history of the current methods and different types of electrochemical biosensors used for the detection of bacterial pathogens. We primarily focus on the recent progress and applications of graphene, carbon nanotubes and their derivatives in electrochemical biosensors for foodborne bacterial pathogens detection. Finally, the status and future prospects of carbon-based electrochemical biosensors are also reviewed and discussed.
  5. Kamaluddin MR, Mahat NA, Mat Saat GA, Othman A, Anthony IL, Kumar S, et al.
    PMID: 33803514 DOI: 10.3390/ijerph18063113
    The escalating trend of murder victim concealment worldwide appears worrying, and literature does not reveal any specific study focusing on victim concealment amongst convicted male Malaysian murderers. Therefore, this study was aimed at investigating the psychological traits that may underlie the act of murder concealment in Malaysia via mixed method approaches. Male murderers (n = 71) from 11 prisons were selected via purposive sampling technique. In the quantitative analysis, a cross-sectional study design using the validated questionnaire was used. The questionnaire contained murder concealment variables and four Malay validated psychometric instruments measuring: personality traits, self-control, aggression, and cognitive distortion. The independent sample t-tests revealed the significantly higher level of anger in murderers who did not commit concealment acts (8.55 ± 2.85, p < 0.05) when compared with those who did so (6.40 ± 2.64). Meanwhile, the Kruskal-Wallis H test revealed that anger and the personality trait of aggressiveness-hostility significantly varied across the different groups of murder concealment acts (p < 0.05). The qualitative data obtained via the in-depth interviews revealed two important themes for the murderers to commit murder concealment acts: (1) fear of discovery and punishment and (2) blaming others. These findings discussed from the perspectives of the murderers within the context of criminology and psychology may provide the first ever insight into the murder concealment acts in Malaysia that can benefit the relevant authorities for crime prevention and investigation efforts.
  6. Hasan MR, Pulingam T, Appaturi JN, Zifruddin AN, Teh SJ, Lim TW, et al.
    Anal Biochem, 2018 08 01;554:34-43.
    PMID: 29870692 DOI: 10.1016/j.ab.2018.06.001
    In this study, an amino-modified aptasensor using multi-walled carbon nanotubes (MWCNTs)-deposited ITO electrode was prepared and evaluated for the detection of pathogenic Salmonella bacteria. An amino-modified aptamer (ssDNA) which binds selectively to whole-cell Salmonella was immobilised on the COOH-rich MWCNTs to produce the ssDNA/MWCNT/ITO electrode. The morphology of the MWCNT before and after interaction with the aptamers were observed using scanning electron microscopy (SEM). Cyclic voltammetry and electrochemical impedance spectroscopy techniques were used to investigate the electrochemical properties and conductivity of the aptasensor. The results showed that the impedance measured at the ssDNA/MWCNT/ITO electrode surface increased after exposure to Salmonella cells, which indicated successful binding of Salmonella on the aptamer-functionalised surface. The developed ssDNA/MWCNT/ITO aptasensor was stable and maintained linearity when the scan rate was increased from 10 mV s-1 to 90 mV s-1. The detection limit of the ssDNA/MWCNT/ITO aptasensor, determined from the sensitivity analysis, was found to be 5.5 × 101 cfu mL-1 and 6.7 × 101 cfu mL-1 for S. Enteritidis and S. Typhimurium, respectively. The specificity test demonstrated that Salmonella bound specifically to the ssDNA/MWCNT/ITO aptasensor surface, when compared with non-Salmonella spp. The prepared aptasensor was successfully applied for the detection of Salmonella in food samples.
  7. Dahlan NA, Thiha A, Ibrahim F, Milić L, Muniandy S, Jamaluddin NF, et al.
    Nanomaterials (Basel), 2022 Nov 16;12(22).
    PMID: 36432311 DOI: 10.3390/nano12224025
    bioNEMS/MEMS has emerged as an innovative technology for the miniaturisation of biomedical devices with high precision and rapid processing since its first R&D breakthrough in the 1980s. To date, several organic including food waste derived nanomaterials and inorganic nanomaterials (e.g., carbon nanotubes, graphene, silica, gold, and magnetic nanoparticles) have steered the development of high-throughput and sensitive bioNEMS/MEMS-based biosensors, actuator systems, drug delivery systems and implantable/wearable sensors with desirable biomedical properties. Turning food waste into valuable nanomaterials is potential groundbreaking research in this growing field of bioMEMS/NEMS. This review aspires to communicate recent progress in organic and inorganic nanomaterials based bioNEMS/MEMS for biomedical applications, comprehensively discussing nanomaterials criteria and their prospects as ideal tools for biomedical devices. We discuss clinical applications for diagnostic, monitoring, and therapeutic applications as well as the technological potential for cell manipulation (i.e., sorting, separation, and patterning technology). In addition, current in vitro and in vivo assessments of promising nanomaterials-based biomedical devices will be discussed in this review. Finally, this review also looked at the most recent state-of-the-art knowledge on Internet of Things (IoT) applications such as nanosensors, nanoantennas, nanoprocessors, and nanobattery.
  8. Thiha A, Ibrahim F, Joseph K, Petrović B, Kojić S, Dahlan NA, et al.
    PLoS One, 2023;18(2):e0280381.
    PMID: 36795661 DOI: 10.1371/journal.pone.0280381
    Diagnosing oral diseases at an early stage may lead to better preventive treatments, thus reducing treatment burden and costs. This paper introduces a systematic design of a microfluidic compact disc (CD) consisting of six unique chambers that run simultaneously from sample loading, holding, mixing and analysis. In this study, the electrochemical property changes between real saliva and artificial saliva mixed with three different types of mouthwashes (i.e. chlorhexidine-, fluoride- and essential oil (Listerine)-based mouthwashes) were investigated using electrical impedance analysis. Given the diversity and complexity of patient's salivary samples, we investigated the electrochemical impedance property of healthy real saliva mixed with different types of mouthwashes to understand the different electrochemical property which could be a foundation for diagnosis and monitoring of oral diseases. On the other hand, electrochemical impedance property of artificial saliva, a commonly used moisturizing agent and lubricant for the treatment of xerostomia or dry mouth syndrome was also studied. The findings indicate that artificial saliva and fluoride-based mouthwash showed higher conductance values compared to real saliva and two other different types of mouthwashes. The ability of our new microfluidic CD platform to perform multiplex processes and detection of electrochemical property of different types of saliva and mouthwashes is a fundamental concept for future research on salivary theranostics using point-of-care microfluidic CD platform.
  9. Uddin SM, Ibrahim F, Sayad AA, Thiha A, Pei KX, Mohktar MS, et al.
    Sensors (Basel), 2015 Mar 05;15(3):5376-89.
    PMID: 25751077 DOI: 10.3390/s150305376
    In recent years, many improvements have been made in foodborne pathogen detection methods to reduce the impact of food contamination. Several rapid methods have been developed with biosensor devices to improve the way of performing pathogen detection. This paper presents an automated endpoint detection system for amplicons generated by loop mediated isothermal amplification (LAMP) on a microfluidic compact disk platform. The developed detection system utilizes a monochromatic ultraviolet (UV) emitter for excitation of fluorescent labeled LAMP amplicons and a color sensor to detect the emitted florescence from target. Then it processes the sensor output and displays the detection results on liquid crystal display (LCD). The sensitivity test has been performed with detection limit up to 2.5 × 10(-3) ng/µL with different DNA concentrations of Salmonella bacteria. This system allows a rapid and automatic endpoint detection which could lead to the development of a point-of-care diagnosis device for foodborne pathogens detection in a resource-limited environment.
  10. Al-Faqheri W, Ibrahim F, Thio TH, Bahari N, Arof H, Rothan HA, et al.
    Sensors (Basel), 2015 Feb 25;15(3):4658-76.
    PMID: 25723143 DOI: 10.3390/s150304658
    In this paper, we propose an easy-to-implement passive liquid valve (PLV) for the microfluidic compact-disc (CD). This valve can be implemented by introducing venting chambers to control the air flow of the source and destination chambers. The PLV mechanism is based on equalizing the main forces acting on the microfluidic CD (i.e., the centrifugal and capillary forces) to control the burst frequency of the source chamber liquid. For a better understanding of the physics behind the proposed PLV, an analytical model is described. Moreover, three parameters that control the effectiveness of the proposed valve, i.e., the liquid height, liquid density, and venting chamber position with respect to the CD center, are tested experimentally. To demonstrate the ability of the proposed PLV valve, microfluidic liquid switching and liquid metering are performed. In addition, a Bradford assay is performed to measure the protein concentration and evaluated in comparison to the benchtop procedure. The result shows that the proposed valve can be implemented in any microfluidic process that requires simplicity and accuracy. Moreover, the developed valve increases the flexibility of the centrifugal CD platform for passive control of the liquid flow without the need for an external force or trigger.
  11. Kioh SH, Mat S, Kamaruzzaman SB, Ibrahim F, Mokhtar MS, Hairi NN, et al.
    J Aging Phys Act, 2020 Jun 01;28(3):426-433.
    PMID: 31756717 DOI: 10.1123/japa.2019-0011
    The current evidence on the relationship between a higher body mass index (BMI) and falls in older adults is conflicting. This study, therefore, evaluated the relationship between BMI and falls and explored underlying mechanisms for this relationship. Data from 1,340 individuals from the Malaysian Elders Longitudinal Research study, obtained through home-based computer-assisted interviews and followed by hospital-based health checks, were utilized. A history of the presence of falls in the previous 12 months was obtained. The presence of at least one fall in the past 12 months was associated with a higher BMI (odds ratio = 1.03, 95% confidence interval [1.01, 1.06]). The relationship between a higher BMI and falls was, however, attenuated by a lower percentage of lean body mass, which accounted for 69% of the total effect of BMI on the risk of falls. Future studies should now investigate this aforementioned relationship prospectively.
  12. Mohktar MS, Ibrahim F, Mohd Rozi NF, Mohd Yusof J, Ahmad SA, Su Yen K, et al.
    Med Sci Monit, 2013 Dec 13;19:1159-66.
    PMID: 24335927 DOI: 10.12659/MSM.889628
    BACKGROUND: Currently, the reference standard used to clinically assess sexual function among women is a qualitative questionnaire. Hence, a generalised and quantitative measurement tool needs to be available as an alternative. This study investigated whether an electromyography (EMG) measurement technique could be used to help quantify women's sexual function.

    MATERIAL AND METHODS: A preliminary intervention study was conducted on 12 female subjects, who were randomised into a control (n=6) and an intervention (n=6) group. Intervention involved a set regimen of pelvic floor muscle exercises (Kegel) and the control group did not have any treatment. All subjects were asked to answer a validated, self-rated Pelvic Organ Prolapse/Urinary Incontinence Sexual Function Questionnaire (PISQ). EMG measurements of the pelvic floor muscles (PFM) and the abdominal muscles were taken from all women at recruitment and 8 weeks after study commencement.

    RESULTS: After 8 weeks, most of the subjects in the control group did not display any noted positive difference in either PISQ score (4/6) or in their muscle strength (4/6). However, a noted progressive difference were observed in subjects who were placed in the Kegel group; PISQ score (5/6) and muscles strength (4/6).

    CONCLUSIONS: The noted difference in the Kegel group subjects was that if progress is observed in the sexual function, improvement is also observed in the strength of at least 2 types of muscles (either abdominal or PFM muscles). Thus, EMG measurement is a potential technique to quantify the changes in female sexual function. Further work will be conducted to validate this assumption.

  13. Sayuti NASA, Ibrahim FW, Jufri NF, Masre SF, Abdullah AHA, Raub SHA, et al.
    Trop Biomed, 2024 Sep 01;41(3):257-263.
    PMID: 39548778 DOI: 10.47665/tb.41.3.004
    Tuberculosis (TB) is a critical disease that predominantly affects the lungs. This disease remains a global health threat. Currently, the incidence of TB is estimated to be 92 cases in every 100 000 population. However, latent TB infection (LTBI) cases among Malaysians are another great health concern that requires immediate steps to be taken to detect, diagnose, and treat LTBI as one of the key strategies to end TB. Although individuals with LTBI are unlikely to infect others, the threat of infection is still imminent as these individuals can potentially develop into active TB cases. As such, this study aims to identify the prevalence of LTBI among asymptomatic individuals that underwent QuantiFERON®-TB Gold Plus test from a private laboratory in Malaysia to determine the association between the risk factors and the detected LTBI cases. A retrospective study was conducted by analyzing the archive records of 3 877 samples from January 2021 to March 2022. The cases underwent QuantiFERON®-TB Gold Plus tests for LTBI at Premier Integrated Labs. This study underlines that those who were LTBI positive had a prevalence of 638/3 877 (16.46%) with males contributing to 343/638 cases (53.76%). Furthermore, the majority of the positive cases were between the age of 30-43 years old with 197/638 (30.88%), and Chinese ethnicity with 225/638 (35.27%). The risk factors significantly associated with LTBI cases were age (p = 0.001) and ethnicity (p = 0.001). The prevalence of LTBI determined through this study is considered remarkably low for an intermediate TB burden country. Although LTBI is not contagious, specific clinical and preventative considerations are needed for the diagnosis, treatment, and implementation of appropriate safety measures to curb the spread of TB in Malaysia.
  14. Osman ZJ, Mukhtar F, Hashim HA, Abdul Latiff L, Mohd Sidik S, Awang H, et al.
    Compr Psychiatry, 2014 Oct;55(7):1720-5.
    PMID: 24952938 DOI: 10.1016/j.comppsych.2014.04.011
    OBJECTIVE: The 21-item Depression, Anxiety and Stress Scale (DASS-21) is frequently used in non-clinical research to measure mental health factors among adults. However, previous studies have concluded that the 21 items are not stable for utilization among the adolescent population. Thus, the aims of this study are to examine the structure of the factors and to report on the reliability of the refined version of the DASS that consists of 12 items.
    METHOD: A total of 2850 students (aged 13 to 17 years old) from three major ethnic in Malaysia completed the DASS-21. The study was conducted at 10 randomly selected secondary schools in the northern state of Peninsular Malaysia. The study population comprised secondary school students (Forms 1, 2 and 4) from the selected schools.
    RESULTS: Based on the results of the EFA stage, 12 items were included in a final CFA to test the fit of the model. Using maximum likelihood procedures to estimate the model, the selected fit indices indicated a close model fit (χ(2)=132.94, df=57, p=.000; CFI=.96; RMR=.02; RMSEA=.04). Moreover, significant loadings of all the unstandardized regression weights implied an acceptable convergent validity. Besides the convergent validity of the item, a discriminant validity of the subscales was also evident from the moderate latent factor inter-correlations, which ranged from .62 to .75. The subscale reliability was further estimated using Cronbach's alpha and the adequate reliability of the subscales was obtained (Total=76; Depression=.68; Anxiety=.53; Stress=.52).
    CONCLUSION: The new version of the 12-item DASS for adolescents in Malaysia (DASS-12) is reliable and has a stable factor structure, and thus it is a useful instrument for distinguishing between depression, anxiety and stress.
  15. Frize M, Lhotska L, Marcu LG, Stoeva M, Barabino G, Ibrahim F, et al.
    Gend Work Organ, 2021 Apr 28.
    PMID: 34230783 DOI: 10.1111/gwao.12690
    The COVID-19 pandemic has forced many people, including those in the fields of science and engineering, to work from home. The new working environment caused by the pandemic is assumed to have a different impact on the amount of work that women and men can do from home. Particularly, if the major burden of child and other types of care is still predominantly on the shoulders of women. As such, a survey was conducted to assess the main issues that biomedical engineers, medical physicists (academics and professionals), and other similar professionals have been facing when working from home during the pandemic. A survey was created and disseminated worldwide. It originated from a committee of International Union for Physical and Engineering Sciences in Medicine (IUPESM; Women in Medical Physics and Biomedical Engineering Task Group) and supported by the Union. The ethics clearance was received from Carleton University. The survey was deployed on the Survey Monkey platform and the results were analyzed using IBM SPSS software. The analyses mainly consisted of frequency of the demographic parameters and the cross-tabulation of gender with all relevant variables describing the impact of work at home. A total of 921 responses from biomedical professions in 76 countries were received: 339 males, 573 females, and nine prefer-not-to-say/other. Regarding marital/partnership status, 85% of males were married or in partnership, and 15% were single, whereas 72% of females were married or in partnership, and 26% were single. More women were working from home during the pandemic (68%) versus 50% of men. More men had access to an office at home (68%) versus 64% for women. The proportion of men spending more than 3 h on child care and schooling per day was 12%, while for women it was 22%; for household duties, 8% of men spent more than 3 h; for women, this was 12.5%. It is interesting to note that 44% of men spent between 1 and 3 h per day on household duties, while for women, it was 55%. The high number of survey responses can be considered excellent. It is interesting to note that men participate in childcare and household duties in a relatively high percentage; although this corresponds to less hours daily than for women. It is far more than can be found 2 and 3 decades ago. This may reflect the situation in the developed countries only-as majority of responses (75%) was received from these countries. It is evident that the burden of childcare and household duties will have a negative impact on the careers of women if the burden is not more similar for both sexes. It is important to recognize that a change in policies of organizations that hire them may be required to provide accommodation and compensation to minimize the negative impact on the professional status and career of men and women who work in STEM fields.
  16. Aeinehvand MM, Weber L, Jiménez M, Palermo A, Bauer M, Loeffler FF, et al.
    Lab Chip, 2019 Feb 20.
    PMID: 30785443 DOI: 10.1039/c8lc00849c
    Reversible valves on centrifugal microfluidic platforms facilitate the automation of bioanalytical assays, especially of those requiring a series of steps (such as incubation) in a single reaction chamber. In this study, we present fixed elastic reversible (FER) valves and tunable elastic reversible (TER) valves that are easy to fabricate, implement and control. In the FER valve the compression of an elastic barrier/patch against a microchamber's outlet prevents the release of liquid. The valve sealing pressure was determined by adjusting the engraving depth of the valve-seat at which the elastic patch was located, this allows to set the sealing pressure during disc fabrication. In the TER valve, the patch compression value and sealing pressure is controlled by the penetration depth of a plastic screw into the valve-seat. The ER valves prevent liquid flow until the centrifugal force overcomes their sealing pressure. Moreover, at a constant spin speed, turning the screw of a TER valve reduces its sealing pressure and opens the valve. Therefore, the TER valve allows for controlling of the liquid transfer volume at various spin speeds. The FER and TER valves' behavior is mathematically described and equations for the prediction of their operation under centrifugal forces are provided. As a point-of-care (POC) application of ER valves, we have developed a microfluidic disc with a series of TER valves and peptide microarrays for automated multiplexed detection of five different proteins from a single serum sample.
  17. Zambry NS, Awang MS, Hamzah HH, Mohamad AN, Khalid MF, Khim BK, et al.
    Anal Methods, 2024 Jul 16.
    PMID: 39011785 DOI: 10.1039/d4ay00888j
    A highly accurate, rapid, portable, and robust platform for detecting Salmonella enterica serovar Typhi (S. Typhi) is crucial for early-stage diagnosis of typhoid to avert and control the outbreaks of this pathogen, which threaten global public health. This study presents a proof-of-concept for our developed label-free electrochemical DNA biosensor system for S. Typhi detection, which employs a printed circuit board gold electrode (PCBGE), integrated with a portable potentiostat reader. Initially, the functionalized DNA biosensor and target detection were characterized using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) methods using a benchtop potentiostat. Interestingly, the newly developed DNA biosensor can identify target single-stranded DNA concentrations ranging from 10 nM to 20 μM, achieving a detection limit of 7.6 nM within a brief 5 minute timeframe. Under optimal detection conditions, the DNA biosensor exhibits remarkable selectivity, capable of distinguishing a single mismatch base pair from the target single-stranded DNA sequence. We then evaluated the feasibility of the developed DNA biosensor system as a diagnostic tool by detecting S. Typhi in 50 clinical samples using a portable potentiostat reader based on the DPV technique. Remarkably, the developed biosensor can distinctly distinguish between positive and negative samples, indicating that the miniaturised DNA biosensor system is practical for detecting S. Typhi in real biological samples. The developed DNA biosensor device in this work proves to be a promising point-of-care (POC) device for Salmonella detection due to its swift detection time, uncomplicated design, and streamlined workflow detection system.
  18. Sharif Nia H, Marôco J, She L, Khoshnavay Fomani F, Rahmatpour P, Stepanovic Ilic I, et al.
    PLoS One, 2023;18(10):e0285315.
    PMID: 37792853 DOI: 10.1371/journal.pone.0285315
    The COVID-19 pandemic caused unprecedented changes to educational institutions, forcing their closure and a subsequent shift to online education to cater to student learning requirements. However, successful online learning depends on several factors and may also vary between countries. As such, this cross-sectional study sought to investigate how engagement of university students, a major driver of online learning, was influenced by course content, online interaction, student acceptance, and satisfaction with online learning, as well as self-efficacy across nine countries (China, India, Iran, Italy, Malaysia, Portugal, Serbia, Turkey, and the United Arab Emirates) during the COVID-19 pandemic. Using a questionnaire-based approach, data collected from 6,489 university students showed that student engagement was strongly linked to perception of the quality of the course content and online interactions (p < .001). The current study also indicated that online interactions are a major determinant of academic efficacy but only if mediated by engagement within the online learning context. A negative correlation between student engagement and satisfaction with online learning was found, demonstrating the importance of students being engaged behaviorally, emotionally, and cognitively to feel satisfied with learning. Academic efficacy and student satisfaction were explained by course content, online interaction, and online learning acceptance, being mediated by student engagement. Student satisfaction and, to a lesser degree academic efficacy, were also associated with online learning acceptance. Overall, the structural equation model was a good fit for the data collected from all nine countries (CFI = .947, TLI = .943; RMSEA = .068; SRMR = .048), despite differences in the percentage variations explained by each factor (no invariance), likely due to differences in levels of technology use, learning management systems, and the preparedness of teachers to migrate to full online instruction. Despite limitations, the results of this study highlight the most important factors affecting online learning, providing insight into potential approaches for improving student experiences in online learning environments.
  19. Huaraca Huasco W, Riutta T, Girardin CAJ, Hancco Pacha F, Puma Vilca BL, Moore S, et al.
    Glob Chang Biol, 2021 08;27(15):3657-3680.
    PMID: 33982340 DOI: 10.1111/gcb.15677
    Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old-growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi-deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water-stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links