AIM OF THE STUDY: This study was carried out to investigate the antihypertensive and vasodilatory activity of four solvents extracts of P. niruri namely; petroleum ether (PEPN), chloroform (CLPN), methanol (MEPN) and water (WEPN), with the aim of elucidating the mechanism of action and identifying the phytochemical constituents.
MATERIALS AND METHODS: Male Spontaneous Hypertensive Rats (SHRs) were given oral gavage of P. niruri extract daily for two weeks and the blood pressure was recorded in vivo. We also determine the vasodilation effect of the extracts on rings of isolated thoracic aorta pre-contracted with phenylephrine (PE, 1 μM). Endothelium-intact or endothelium-denuded aorta rings were pre-incubated with various antagonists like 1H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ, 10 μM) and Methylene blue (MB 10 μM), sGC inhibitors; Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME, 10 μM) a nitric oxide synthase (NOS) inhibitor; atropine (10 μM), a cholinergic receptor blocker; indomethacin (10 μM), a cyclooxygenase inhibitor and various K+ channel blockers such as glibenclamide (10 μM) and tetraethyl ammonium (TEA 10 μM) for mechanism study.
RESULTS: SHRs receiving P. niruri extracts showed a significant decrease in their blood pressure (BP) when compared to the baseline value, with PEPN being more potent. The extracts (0.125-4 mg/mL) also induced vasorelaxation on endothelium-intact aorta rings. PEPN elicited the most potent maximum relaxation effect (Rmax). Mechanism assessment of PEPN showed that its relaxation effect is significantly suppressed in endothelium-denuded aorta rings. Pre-incubation of aorta rings with atropine, L-NAME, ODQ, indomethacin, and propranolol also significantly attenuated its relaxation effect. Conversely, incubation with TEA and glibenclamide did not show a significant effect on PEPN-induced relaxation.
CONCLUSION: This study indicates that the antihypertensive activity of P. niruri extract is mediated by vasoactive phytoconstituents that dilate the arterial wall via endothelium-dependent pathways and β-adrenoceptor activity which, in turn, cause vasorelaxation and reduce blood pressure.
METHODS AND RESULTS: For 12 years, we followed a prospective nationwide cohort of 15 151 patients (aged 22-101 years, median age 63 years; 72.3% male; 66.7% Chinese, 19.8% Malay, 13.5% Indian) who were hospitalized for acute myocardial infarction between 2000 and 2005. There were 6463 deaths (4534 cardiovascular, 1929 noncardiovascular). Compared with men, women had a higher risk of cardiovascular death (age-adjusted hazard ratio [HR] 1.3, 95% CI 1.2-1.4) but a similar risk of noncardiovascular death (HR 0.9, 95% CI 0.8-1.0). Sex differences in cardiovascular death varied by ethnicity, age, and time. Compared with Chinese women, Malay women had the greatest increased hazard of cardiovascular death (HR 1.4, 95% CI 1.2-1.6) and a marked imbalance in death due to heart failure or cardiomyopathy (HR 3.4 [95% CI 1.9-6.0] versus HR 1.5 [95% CI 0.6-3.6] for Indian women). Compared with same-age Malay men, Malay women aged 22 to 49 years had a 2.5-fold (95% CI 1.6-3.8) increased hazard of cardiovascular death. Sex disparities in cardiovascular death tapered over time, least among Chinese patients and most among Indian patients; the HR comparing cardiovascular death of Indian women and men decreased from 1.9 (95% CI 1.5-2.4) at 30 days to 0.9 (95% CI 0.5-1.6) at 10 years.
CONCLUSION: Age, ethnicity, and time strongly influence the association between sex and specific cardiovascular causes of mortality, suggesting that health care policy to reduce sex disparities in acute myocardial infarction outcomes must consider the complex interplay of these 3 major modifying factors.
METHODOLOGY/PRINCIPAL FINDINGS: Using a double-blind, placebo controlled, crossover design, participants (N = 24) received two doses of Panax Ginseng (500, 1000 mg) or Ginkgo Biloba (120, 240 mg) (N = 24), and underwent a series of cognitive tests while systolic, diastolic, and heart rate readings were taken. Ginkgo Biloba improved aspects of executive functioning (Stroop and Berg tasks) in females but not in males. Ginseng had no effect on cognition. Ginkgo biloba in females reversed the initial (i.e. placebo) increase in cardiovascular reactivity (systolic and diastolic readings increased compared to baseline) to cognitive tasks. This effect (reversal) was most notable after those tasks (Stroop and Iowa) that elicited the greatest cardiovascular reactivity during placebo. In males, although ginkgo also decreased cardiovascular readings, it did so from an initial (placebo) blunted response (i.e. decrease or no change from baseline) to cognitive tasks. Ginseng, on the contrary, increased cardiovascular readings compared to placebo.
CONCLUSIONS/SIGNIFICANCE: These results suggest that cardiovascular reactivity may be a mechanism by which ginkgo but not ginseng, in females is associated with certain forms of cognitive improvement.
TRIAL REGISTRATION: ClinicalTrials.gov NCT02386852.
Methods: We recruited independent patients with clinically confirmed lacunar ischaemic stroke without cognitive impairment to a prospective randomised clinical trial, LACunar Intervention-1 (LACI-1). We randomised patients using a central web-based system, 1:1:1:1 with minimisation, to masked ISMN 25 mg bd, cilostazol 100 mg bd, both ISMN and cilostazol started immediately, or both with start delayed. We escalated doses to target over two weeks, sustained for eight weeks. Primary outcome was the proportion achieving target dose. Secondary outcomes included symptoms, safety (haemorrhage, recurrent vascular events), cognition, haematology, vascular function, and neuroimaging. LACI-1 was powered (80%, alpha 0.05) to detect 35% (90% versus 55%) difference between the proportion reaching target dose on one versus both drugs at 55 patients. Registration ISRCTN12580546.
Findings: LACI-1 enrolled 57 participants between March 2016 and August 2017: 18 (32%) females, mean age 66 (SD 11, range 40-85) years, onset-randomisation 203 (range 6-920) days. Most achieved full (64%) or over half (87%) dose, with no difference between cilostazol vs ISMN, single vs dual drugs. Headache and palpitations increased initially then declined similarly with dual versus single drugs. There was no between-group difference in BP, pulse-wave velocity, haemoglobin or platelet function, but pulse rate was higher (mean difference, MD, 6.4, 95%CI 1.2-11.7, p = 0.02), platelet count higher (MD 35.7, 95%CI 2.8, 68.7, p = 0.03) and white matter hyperintensities reduced more (Chi-square p = 0.007) with cilostazol versus no cilostazol.
Interpretation: Cilostazol and ISMN are well tolerated when the dose is escalated, without safety concerns, in patients with lacunar stroke. Larger trials with longer term follow-up are justified.
Funding: Alzheimer's Society (AS-PG-14-033).