Displaying publications 901 - 920 of 1359 in total

Abstract:
Sort:
  1. Abdullah CK, Ismail I, Nurul Fazita MR, Olaiya NG, Nasution H, Oyekanmi AA, et al.
    Polymers (Basel), 2021 May 17;13(10).
    PMID: 34067604 DOI: 10.3390/polym13101615
    The effect of incorporating different loadings of oil palm bio-ash nanoparticles from agriculture waste on the properties of phenol-formaldehyde resin was investigated in this study. The bio-ash filler was used to enhance the performance of phenol-formaldehyde nanocomposites. Phenol-formaldehyde resin filled with oil palm bio-ash nanoparticles was prepared via the in-situ polymerization process to produce nanocomposites. The transmission electron microscope and particle size analyzer result revealed that oil palm bio-ash nanoparticles had a spherical geometry of 90 nm. Furthermore, X-ray diffraction results confirmed the formation of crystalline structure in oil palm bio-ash nanoparticles and phenol-formaldehyde nanocomposites. The thermogravimetric analysis indicated that the presence of oil palm bio-ash nanoparticles enhanced the thermal stability of the nanocomposites. The presence of oil palm bio-ash nanoparticles with 1% loading in phenol-formaldehyde resin enhanced the internal bonding strength of plywood composites. The scanning electron microscope image revealed that phenol-formaldehyde nanocomposites morphology had better uniform distribution and dispersion with 1% oil palm bio-ash nanoparticle loading than other phenol-formaldehyde nanocomposites produced. The nanocomposite has potential use in the development of particle and panel board for industrial applications.
    Matched MeSH terms: Nanoparticles
  2. Sagadevan S, Chowdhury ZZ, Johan MRB, Aziz FA, Roselin LS, Podder J, et al.
    J Nanosci Nanotechnol, 2019 Nov 01;19(11):7139-7148.
    PMID: 31039868 DOI: 10.1166/jnn.2019.16666
    In this work, a simple, co-precipitation technique was used to prepare un-doped, pure tin oxide (SnO₂). As synthesized SnO₂ nanoparticles were doped with Cu2+ ions. Detailed characterization was carried out to observe the crystalline phase, morphological features and chemical constituents with opto-electrical and magnetic properties of the synthesized nanoparticles (NPs). X-ray diffraction analysis showed the existence of crystalline, tetragonal structure of SnO₂. Both the sample synthesized here showed different crystalline morphology. The band gap energy (Eg) of the synthesized sample was estimated and it was found to decrease from 3.60 to 3.26 eV. The band gap energy reduced due to increase in Cu2+ dopant amount inside the SnO₂ lattice. Optical properties were analyzed using absorption spectra and Photoluminescence (PL) spectra. It was observed that Cu2+ ions incorporated SnO₂ NPs exhibited more degradation efficiencies for Rhodamine B (RhB) dye compared to un-doped sample under UV-Visible irradiation. The dielectric characteristics of un-doped, pure and Cu2+ incorporated SnO₂ nanoparticles were studied at different frequency region under different temperatures. The ac conductivity and impedance analysis of pure and Cu2+ incorporated SnO₂ nanoparticles was also studied. The magnetic properties of the synthesized samples were analysed. Both the sample showed ferromagnetic properties. The research indicated that the Cu2+ ions doping can make the sample a promising candidate for using in the field of optoelectronics, magneto electronics, and microwave devices.
    Matched MeSH terms: Nanoparticles
  3. Ikhsan NI, Rameshkumar P, Yusoff N, Huang NM
    J Nanosci Nanotechnol, 2019 Nov 01;19(11):7054-7063.
    PMID: 31039858 DOI: 10.1166/jnn.2019.16630
    Silver-reduced graphene oxide (Ag-rGO) nanohybrid was synthesized by applying a slight modification to the Turkevich method using trisodium citrate as a reducing and stabilizing agent to catalyze the non-enzymatic electrochemical detection of hydrogen peroxide (H₂O₂). Spherical silver nanoparticles (AgNPs) with an average particle size of 2.2 nm surfaced on reduced graphene oxide (rGO) sheets. Cyclic voltammograms (CV) obtained from glassy carbon (GC) electrode coated with Ag-rGO nanohybrid (4 mM) exhibited a peak at an overpotential of -0.52 V, with a larger faradaic current for the reduction of H₂O₂. Using the modified electrode for the linear sweep voltammetry (LSV) detection of H₂O₂, the detection limit and sensitivity were determined to be 4.8 μM (S/N ═ 3) and 0.0262 μA μM-1, respectively. The sensor appeared selective and stable towards H₂O₂ in the presence of possible interference, and it also demonstrated good recoveries of H₂O₂ concentration in real water samples.
    Matched MeSH terms: Metal Nanoparticles
  4. Sagadevan S, Venilla S, Marlinda AR, Johan MR, Wahab YA, Zakaria R, et al.
    J Nanosci Nanotechnol, 2020 Apr 01;20(4):2488-2494.
    PMID: 31492266 DOI: 10.1166/jnn.2020.17185
    Herein, we report the effect of synthesis temperature on the morphologies, optical and electronic properties of magnesium oxide (MgO) nanostructures. The MgO nanostructures were synthesized at different temperatures, i.e., 100 °C, 300 °C, and 600 °C by simple chemical reaction process and their morphology, particle size, optical, and electrical properties were examined by different techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and UV-Vis. spectroscopy. The morphological investigations revealed that various morphologies of MgO nanostructures, i.e., nanoparticles, nanosheet networks, and nanoneedles were synthesized at 100 °C, 300 °C, and 600 °C. The XRD results confirmed that with increasing the synthesis temperature, the crystallinity of the synthesized nanostructures increases. Further, the dielectric properties and AC conductivity at various frequencies for MgO nanostructures were studied which revealed that the dielectric losses decrease with increase in frequency and temperature. In addition, the observed band gap decreases from 4.89 eV to 4.438 eV (100 °C to 600 °C) representing its increase in the conductivity.
    Matched MeSH terms: Nanoparticles
  5. Umar S, Sulaiman F, Abdullah N, Mohamad SN
    J Nanosci Nanotechnol, 2020 12 01;20(12):7569-7576.
    PMID: 32711628 DOI: 10.1166/jnn.2020.18616
    Conventional thermal fluids with suspended nanoparticles, known as nanofluids, have been developed for heat transfer applications. Heat transfer loss could be reduced significantly if the thermophysical properties of the heat transfer fluid are improved, which to some extent, could reduce the present global environmental challenges associated with energy utilization, such as climate change and global warming. In this work, the role of the concentration of sodium dodecyl-benzene sulfonate (SDBS) in the stability of Al₂O₃/bio-oil nanofluid is investigated the zeta potential value, and its implications to the viscosity and thermal conductivity of the nanofluid are explored. The bio-oil based nanofluid is fixed using a two-step method in which the prepared base fluid is added with 13-nm alumina nanoparticles powder. Various weight fractions of SDBS (0.1, 0.2, 0.4, 0.6, and 1.0 wt%) are used for both 0.1 and 0.2 wt% Al₂O₃ to investigate the significance of the stability of a nanofluid on its thermal conductivity and viscosity. Results indicate that a stable nanofluid has reduced viscosity and increased thermal conductivity.
    Matched MeSH terms: Nanoparticles
  6. Rozi SKM, Shahabuddin S, Manan NSA, Mohamad S, Kamal SAA, Rahman SA
    J Nanosci Nanotechnol, 2018 May 01;18(5):3248-3256.
    PMID: 29442825 DOI: 10.1166/jnn.2018.14699
    The present work highlights the facile synthesis of hydrophobic palm fatty acid functionalized Fe3O4 nanoparticles (MNP-FA) for the efficient removal of oils from the surface of water. An intense hydrophobic layer was introduced on the surface of Fe3O4 nanoparticles functionalized by the palm fatty acid obtained from the hydrolysis of palm olein. Scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), Energy dispersive X-ray spectroscopy (EDX) and water contact angle analysis (WCA) measurements were used to characterize the newly fabricated palm fatty acid adorned magnetic Fe3O4 nanoparticles (MNP-FA). The obtained results confirmed the successful synthesis of palm fatty acid-functionalized magnetic nanoparticles. Oil removal tests performed with MNP-FA revealed that this newly prepared material could selectively adsorb lubricating oil up to 3.5 times of the particles' weight while completely repelling water. The main parameters affecting the adsorption of oil i.e., sorption time, mass of sorbent and pH of water were optimized.
    Matched MeSH terms: Magnetite Nanoparticles
  7. Norsyuhada W, Shukri WM, Bidin N, Islam S, Krishnan G
    J Nanosci Nanotechnol, 2018 Jul 01;18(7):4841-4851.
    PMID: 29442664 DOI: 10.1166/jnn.2018.15358
    Au-Ag alloy nanoparticles are physically synthesized using rapid, simple and efficient Q-switched Nd:YAG pulsed laser ablation in liquid technique (PLAL). Au and Ag colloidal solutions are separately prepared by 1064 nm laser ablation of metallic target (gold and silver) which is immersed in deionized water. Au-Ag alloy nanoparticles are prepared by irradiating the mixture of Au and Ag colloidal solutions with 532 nm of second harmonic wavelength of Nd:YAG laser at three different ratio, 3:1, 1:1 and 1:3 within different exposure times. The three of plasmon absorption bands of Au-Ag nanoparticles are shifted linearly to the lower wavelength [499.67 nm (3:1), 481.25 nm (1:1), 467.91 nm (1:3)], as compared to plasmon absorption spectra of pure Au (520 nm) and Ag (400 nm). Moreover, the change in colors are also observed from red (Au) and yellow (Ag) to orange, brown and green color due to the Au-Ag alloy formations, respectively. Transmission electron microscopy shows the Ag shell around the inner core of Au spherical metal with broad size distribution due to the three different volume ratio, respectively (1.7 nm, 0.7 nm, 1.4 nm). Energy-dispersive X-ray spectroscopy analysis confirms the presence of Au and Ag elements in Au-Ag alloy nanoparticles without any contaminations. Attenuated total reflectance fourier transform infrared spectroscopy analysis also confirms the homogenous Au-Ag alloys chemical bonding.
    Matched MeSH terms: Metal Nanoparticles
  8. Dabagh S, Chaudhary K, Haider Z, Ali J
    J Nanosci Nanotechnol, 2019 Jul 01;19(7):4142-4146.
    PMID: 30764983 DOI: 10.1166/jnn.2019.16331
    Aluminium substituted cobalt-copper Co1-xCuxFe2-xAlxO₄, (x ═ 0.8) nanoparticles are grown and sintered at different temperature in the range 600 to 900 °C. XRD analysis on nanoparticles prepared at sintered temperatures of 700 °C and 800 °C confirms the spinel structure and presence of hematite phase (alpha ferrite) in them. The dielectric behaviour of the prepared nano-particles is investigated. Although crystallinity improved with increase in sintering temperature and there was a dielectric loss at higher probe analyser frequency. The synthesized nanoparticles an average particle size of 20-24 nm while the FTIR absorption in regions of 586-595 cm-1 and 450-460 cm-1 indicated the presence of intrinsic vibrations of the tetrahedral and octahedral complexes respectively. Electrical resistivity as a function of temperature confirms the semiconducting nature of the Cu-Al substituted cobalt ferrite, and is attributed to the hopping mechanism between Fe2+ Fe3+ ions and Co2+ Cu2+, Co2+ Al3+. The lower values of dielectric constants and dielectric losses make Al-Cu doped cobalt ferrite, a potential material for microwave and radio wave absorber applications.
    Matched MeSH terms: Nanoparticles
  9. Yahya N, Akhtar MN, Nasir N, Shafie A, Jabeli MS, Koziol K
    J Nanosci Nanotechnol, 2012 Oct;12(10):8100-9.
    PMID: 23421185
    In seabed logging the magnitude of electromagnetic (EM) waves for the detection of a hydrocarbon reservoir in the marine environment is very important. Having a strong EM source for exploration target 4000 m below the sea floor is a very challenging task. A new carbon nanotubes (CNT) fibres/aluminium based EM transmitter is developed and NiZn ferrite as magnetic feeders was used in a scaled tank to evaluate the presence of oil. Resistive scaled tank experiments with a scale factor of 2000 were carried out. X-ray Diffraction (XRD), Raman Spectroscopy and Field Emission Scanning Electron Microscope (FESEM) were done to characterize the synthesized magnetic feeders. Single phase Ni0.76Mg0.04Zn0.2Fe2O4, obtained by the sol-gel method and sintered at 700 degrees C in air, has a [311] major peak. FESEM results show nanoparticles with average diameters of 17-45 nm. Samples which have a high Q-factor (approximately 50) was used as magnetic feeders for the EM transmitter. The magnitude of the EM waves of this new EM transmitter increases up to 400%. A curve fitting method using MATLAB software was done to evaluate the performance of the new EM transmitter. The correlation value with CNT fibres/aluminium-NiZnFe2O4 base transmitter shows a 152.5% increase of the magnetic field strength in the presence of oil. Modelling of the scale tank which replicates the marine environment was done using the Finite Element Method (FEM). In conclusion, FEM was able to delineate the presence of oil with greater magnitude of E-field (16.89%) and the B field (4.20%) due to the new EM transmitter.
    Matched MeSH terms: Nanoparticles
  10. Aqeel Y, Siddiqui R, Anwar A, Shah MR, Khan NA
    Antimicrob Agents Chemother, 2015;60(3):1283-8.
    PMID: 26666949 DOI: 10.1128/AAC.01123-15
    Acanthamoeba keratitis is a serious infection with blinding consequences and often associated with contact lens wear. Early diagnosis, followed by aggressive topical application of drugs, is a prerequisite in successful treatment, but even then prognosis remains poor. Several drugs have shown promise, including chlorhexidine gluconate; however, host cell toxicity at physiologically relevant concentrations remains a challenge. Nanoparticles, subcolloidal structures ranging in size from 10 to 100 nm, are effective drug carriers for enhancing drug potency. The overall aim of the present study was to determine whether conjugation with gold nanoparticles enhances the antiacanthamoebic potential of chlorhexidine. Gold-conjugated chlorhexidine nanoparticles were synthesized. Briefly, gold solution was mixed with chlorhexidine and reduced by adding sodium borohydride, resulting in an intense deep red color, indicative of colloidal gold-conjugated chlorhexidine nanoparticles. The synthesis was confirmed using UV-visible spectrophotometry that shows a plasmon resonance peak of 500 to 550 nm, indicative of gold nanoparticles. Further characterization using matrix-assisted laser desorption ionization-mass spectrometry showed a gold-conjugated chlorhexidine complex at m/z 699 ranging in size from 20 to 100 nm, as determined using atomic force microscopy. To determine the amoebicidal and amoebistatic effects, amoebae were incubated with gold-conjugated chlorhexidine nanoparticles. For controls, amoebae also were incubated with gold and silver nanoparticles alone, chlorhexidine alone, neomycin-conjugated nanoparticles, and neomycin alone. The findings showed that gold-conjugated chlorhexidine nanoparticles exhibited significant amoebicidal and amoebistatic effects at 5 μM. Amoebicidal effects were observed by parasite viability testing using a Trypan blue exclusion assay and flow-cytometric analysis using propidium iodide, while amoebistatic effects were observed using growth assays. In contrast, chlorhexidine alone, at a similar concentration, showed limited effects. Notably, neomycin alone or conjugated with nanoparticles did not show amoebicidal or amoebistatic effects. Pretreatment of A. castellanii with gold-conjugated chlorhexidine nanoparticles reduced amoeba-mediated host cell cytotoxicity from 90% to 40% at 5 μM. In contrast, chlorhexidine alone, at similar concentrations, had no protective effects for the host cells. Similarly, amoebae treated with neomycin alone or neomycin-conjugated nanoparticles showed no protective effects. Overall, these findings suggest that gold-conjugated chlorhexidine nanoparticles hold promise in the improved treatment of A. castellanii keratitis.
    Matched MeSH terms: Metal Nanoparticles
  11. Siddique MI, Katas H, Amin MC, Ng SF, Zulfakar MH, Jamil A
    Int J Pharm, 2016 Jun 30;507(1-2):72-82.
    PMID: 27154252 DOI: 10.1016/j.ijpharm.2016.05.005
    The objective of this study was to investigate the in-vivo behavior of topically applied cationic polymeric chitosan nanoparticles (CSNPs) loaded with anti-inflammatory (hydrocortisone, HC) and antimicrobial (hydroxytyrosol, HT) drugs, to elucidate their skin targeting potential for the treatment of atopic dermatitis (AD). Compared to the commercial formulation, the HC-HT loaded CSNPs showed significantly improved drug penetration into the epidermal and dermal layers of albino Wistar rat skin without saturation. Dermal pharmacokinetic of CSNPs with a size of 228.5±7nm and +39±5mV charges revealed that they penetrated 2.46-fold deeper than the commercial formulation did, and had greater affinity at the skin target site without spreading to the surrounding tissues, thereby providing substantial safety benefits. In repeated dermal application toxicity studies, the HC-HT CSNPs showed no evidence of toxicity compared to the commercial formulation, which induced skin atrophy and higher liver enzyme levels. In conclusion, the positively charged HC-HT CSNP formulation exhibited promising local delivery and virtually no treatment-related toxicities, suggesting it may be an efficient and viable alternative for commercially available AD treatments.
    Matched MeSH terms: Nanoparticles
  12. Kumar Dubey S, Pradhan R, Hejmady S, Singhvi G, Choudhury H, Gorain B, et al.
    Int J Pharm, 2021 May 01;600:120499.
    PMID: 33753164 DOI: 10.1016/j.ijpharm.2021.120499
    Age-related macular degeneration (AMD), a degenerative eye disease, is the major cause of irreversible loss of vision among individuals aged 50 and older. Both genetic and environmental factors are responsible for the progressive damage to central vision. It is a multifactorial retinal disease with features such as drusen, hypopigmentation and/or hyperpigmentation of the retinal pigment epithelium, and even choroidal neovascularization in certain patients. AMD is of two major forms: exudative (wet) and atrophic (dry) with changes affecting the macula leading to impaired vision. Although the retina remains an accessible portion for delivering drugs, there are no current options to cure or treat AMD. The existing expensive therapeutics are unable to treat the underlying pathology but display several side effects. However, recent innovations in nanotherapeutics provide an optimal alternative of drug delivery to treat the neovascular condition. These new-age technologies in the nanometer scale would enhance bioactivity and improve the bioavailability of drugs at the site of action to treat AMD. The nanomedicine also provides sustained release of the drug with prolonged retention after penetrating across the ocular tissues. In this review, the insights into the cellular and molecular mechanisms associated with the pathophysiology of AMD are provided. It also serves to review the current progress in nanoparticle-based drug delivery systems that offer feasible treatments in AMD.
    Matched MeSH terms: Nanoparticles
  13. Bapat RA, Chaubal TV, Dharmadhikari S, Abdulla AM, Bapat P, Alexander A, et al.
    Int J Pharm, 2020 Aug 30;586:119596.
    PMID: 32622805 DOI: 10.1016/j.ijpharm.2020.119596
    Major goal of dental treatment is to eradicate the existing diseases of the oral cavity and implement preventive measures to control the spread of the diseases. Various interventions are being used to cure the dental diseases. Due to the nanostructures, high surface volume and biocompatibility, Gold nanoparticles (GNPs) have been experimented in the treatment of gum diseases, dental caries, tissue engineering, dental implantology and diagnosis of cancers. GNPs possess antifungal and antibacterial activity, hence are incorporated in various biomaterials to potentiate the effect. They also enhance the mechanical properties of materials leading to improved outcomes. They are available in different sizes and concentrations to exhibits its beneficial outcomes. These properties of GNPs make these materials as choice of fillers in biomaterials. This review aims to discuss the effect of incorporation of GNPs in several biomaterials used for dental and medical applications.
    Matched MeSH terms: Metal Nanoparticles
  14. Norul Azlin, M.Z., Senin, H.B., Kok Sheng, C.
    MyJurnal
    Phenolic resin-silica nanocomposites samples in pellet shape have been successfully prepared by intercalation of polymer solution through the hot pressing method. The phenolic resin is modified with organic elastomers of silica nanoparticles, which is about 20 nanometer in diameter. The change of density and porosity was studied based on the addition of silica content in the phenolic resin composites. The densities of composites increased with the addition of the silica content from 10 wt.% to 40 wt.%. On the other hand, the porosity percentage was decreased with increasing of silica contents. The mechanical properties (Young’s modulus, energy to break and time to failure) of the nanocomposites samples were identified using the Universal Testing Material Machine (UTM). The results of Young’s modulus, energy to break and time to failure of the phenolic resin composites were found to be slightly increased with silica content from 10 wt.% to 30 wt.%. The X-Ray Microtomogaphy (XRM) topographies have shown that the porosity exists on fracture structure for each nanocomposite. The nanocomposites surface structure has been analyzed using Scanning Electron Microscope (SEM). The observation shows that the fracture surface of the pure phenolic resin is relatively smooth and glassy, which is typical for a brittle material, but the phenolic resin- silica composites fracture surface is not smooth at all. The observations indicate the pure phenolic resin is brittle than phenolic resin-silica nanocomposites. Consequently, the physical properties of the phenolic resin-silica nanocomposites were improved with the addition of 10 wt.% to 30 wt.% silica contents, as compared to that of the pure phenolic resin.
    Matched MeSH terms: Nanoparticles
  15. Hutagalung, Sabar D., Eng, Siew T., Zainal A. Ahmad, Ishak Mat, Yussof Wahab
    MyJurnal
    One-dimensional nanostructure materials are very attractive because of their electronic and optical properties depending on their size. It is well known that properties of material can be tuned by reducing size to nanoscale because at the small sizes, that they behave differently with its bulk materials and the band gap will control by the size. The tunability of the band gap makes nanostructured materials useful for many applications. As one of the wide band gaps semiconductor compounds, zinc selenide (ZnSe) nanostructures (nanoparticles, nanowires, nanorods) have received much attention for the application in optoelectronic devices, such as blue laser diode, light emitting diodes, solar cells and IR optical windows. In this study, ZnSe nanostructures have been synthesized by reduction process of zinc selenate using hydrazine hydrate (N2H4.2H2O). The reductive agent of hydrazine hydrate was added to the starting materials of zinc selenate were heat treated at 500 o C for 1 hour under argon flow to form onedimensional nanostructures. The SEM and TEM images show the formation of nanocompositelike structures, which some small nanobars and nanopellets stick to the rod. The x-ray diffraction and elemental composition analysis confirm the formation of mixture zinc oxide and zinc selenide phases.
    Matched MeSH terms: Nanoparticles
  16. Rida Tajau, Siti Farhana Fathy, Mek Zah Salleh, Nor Azowa Ibrahim, Maznah Ismail, Kamaruddin Hashim
    MyJurnal
    The acrylated palm oil (APO) nanoparticle is a potential product that can be used as carriers in
    medical field. The main focus of the present study was to study the potential of the APO
    nanoparticles for used in a controlled drug delivery system. The microemulsion system is used as a
    medium to incorporate an active substance such as Thymoquinone (TQ) into the APO polymeric
    micelle and then the radiation technique is used as a tool for the synthesis of TQ-loaded APO
    nanoparticle. The nano-size TQ-loaded APO particles resulted the particle size of less than 150 nm
    with spherical in shape. The TQ release profile was carried out in potassium buffer saline (PBS)
    solutions (pH 7.4) at 37
    oC. And, the zero-order model has been used to determine the mechanism
    of the drug release from the corresponding nanoparticles, respectively. The TQ release was found
    to be sustained and controlled in pH 7.4. At pH 7.4, the release of TQ followed the zero-order
    model. The in-vitro drug release study showed a good prospect of the APO nanoparticle on being a
    potential drug carrier as there are toxic against colon cancer cells and not toxic towards normal
    cells. This suggested that the APO product produce using this radiation technique can be
    developed into different type of carrier systems for controlled drug release applications.
    Matched MeSH terms: Nanoparticles
  17. Suria, M.S., Mohd Afendy, A.T, Noor Azlina, M., Zamri, I.
    MyJurnal
    The use of polyclonal antibody (IgG) has recently been applied to the detection of bacteria. We developed a lateral flow assay (LFA) strip using a specific IgG in combination with colloidal gold on a nitrocellulose membrane. A conjugate, gold-anti Escherichia coli (E. coli) O157:H7 IgG was developed in this study for the detection of E. coli O157:H7 in food. The 40 nm in size of colloidal gold nanoparticles was used to conjugate the anti-E. coli O157:H7 IgG. The optimal concentration, 12.0 µg/ml of the anti-E. coli O157:H7 IgG was determined by standard curve generated in titration method. The serially diluted of E. coli O157:H7 was detected and clearly visualized on the LFA strip as low as 106 CFU/ml (result not shown). The IgG raised in rabbit have shown specific binding capacity against E. coli O157:H7. No other genus of bacteria, including Salmonella typhimurium, Listeria monocytogenes and Campylobacter jejuni reacted to the IgG. The LFA strip could also detect E. coli O157:H7 in different food samples matrices after 18 h-enrichment and this result were in accordance with the results of the polymerase chain reaction (PCR) and colony count.
    Matched MeSH terms: Nanoparticles
  18. Teh, G.B., Wong, Y.C., Tilley, R.D.
    ASM Science Journal, 2014;8(1):21-28.
    MyJurnal
    Co(II)-Ti(IV)-substituted magnetoplumbite-type (M-type) barium ferrite nanoparticles were synthesized via the sol-gel technique employing ethylene glycol as the gel precursor. Structural and magnetic properties were characterised via X-ray diffraction (XRD), high resolution transmission electron microscopy and superconducting quantum interference device magnetometry. The particle sizes of the M-type BaCoXTiXFe12-2XO19 (0.2 ≤  ≤ 1.0) were found to be 900 Å – 1500 Å. The XRD results confirmed that the Co(II)-Ti(IV) substituted ferrites in the range of 0.2 ≤  ≤ 1.0 substitution had the M-type ferrite as the dominant phase. The hysteresis loss per-cycle decreased with increasing Co(II)-Ti(IV) substitution in M-type ferrites which showed reduced values in coercivity and remnant magnetisation with moderate effect on the saturation magnetisation.
    Matched MeSH terms: Nanoparticles
  19. Norfaezah Mazalan, Mazatulikhma Mat Zain, Nor Saliyana Jumali, Norhanim Mohalid, Zurina Shameri, Ahmad Sazali Hamzah
    Scientific Research Journal, 2011;8(2):33-47.
    MyJurnal
    Recently, research and development in the field of drug delivery systems (DDS) facilitating site-specific therapy has reached significant progression. DDS based on polymer micelles, coated micro- and nanoparticles, and various prodrug systems including water-soluble polymer have been prepared and extensively studied as novel drugs designed for cancer chemotherapy and brain delivery. Since polymers are going to be used in human, this study has the interest of testing two types of polymer, polyimides (PI) and polyphenylenevinylene (PPV) on neuronal cells. The objective of this study was to determine the possible neurotoxicity and potential neuroprotective effects of PI and PPV towards SH-SY5Y neuronal cells challenged by hydrogen peroxide (1120) as an oxidant. Cells were pretreated with either PI or PPV for 1 hour followed by incubation for 24 hour with 100 ,uM of 11201. MTS • assay was used to assess cell viability. Results show that PI and PPV are not harmful within the concentration up to 10 pM and 100 pM, respectively. However, PI and PPV do not protect neuronal cells against toxicity induced by H2O, or further up the cell death.
    Matched MeSH terms: Nanoparticles
  20. Azdiya Suhada Abdul Rahim Arifin, Ismayadi Ismail, Abdul Halim Abdullah, Farah Nabilah Shafiee, Idza Riati Ibrahim
    MyJurnal
    Clean water is very important for health and well-being of humans and ecosystem. However, over the year, a billion tons of industrial waste, fertilizers and chemical waste were dumped untreated into water bodies, such as rivers, lake and oceans contributing towards water pollution, then threatening human health and ecosystem. Hence, the need for clean water has urged scientists to research and find solutions for improving water quality. Application of nanoparticles in wastewater treatment improves the environmental quality by elimination of harmful pollutants in wastewater. Magnetite is one of the nanoparticles used in wastewater treatment because of its specific large surface area, high reactivity in adsorption and recoverable from treated water via magnetic separation technology. Preparation method of magnetite nanoparticles is the important key to its adsorption efficiency.
    Matched MeSH terms: Magnetite Nanoparticles
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links