Displaying publications 881 - 900 of 4087 in total

Abstract:
Sort:
  1. Daud AN, Bergman JE, Oktora MP, Kerstjens-Frederikse WS, Groen H, Bos JH, et al.
    PLoS One, 2017;12(3):e0173530.
    PMID: 28288183 DOI: 10.1371/journal.pone.0173530
    BACKGROUND: A number of transporter proteins are expressed in the placenta, and they facilitate the placental transfer of drugs. The inhibition of P-glycoprotein (P-gp) was previously found to be associated with an increase in the risk of congenital anomalies caused by drug substrates of this transporter. We now explore the role of other placental transporter proteins.

    METHODS: A population-based case-referent study was performed using cases with congenital anomalies (N = 5,131) from EUROCAT Northern Netherlands, a registry of congenital anomalies. The referent population (N = 31,055) was selected from the pregnancy IADB.nl, a pharmacy prescription database.

    RESULTS: Ten placental transporters known to have comparable expression levels in the placenta to that of P-gp, were selected in this study. In total, 147 drugs were identified to be substrates, inhibitors or inducers, of these transporters. Fifty-eight of these drugs were used by at least one mother in our cases or referent population, and 28 were used in both. The highest user rate was observed for the substrates of multidrug resistance-associated protein 1, mainly folic acid (6% of cases, 8% of referents), and breast cancer resistance protein, mainly nitrofurantoin (2.3% of cases, 2.9% of referents). In contrast to P-gp, drug interactions involving substrates of these transporters did not have a significant effect on the risk of congenital anomalies.

    CONCLUSIONS: Some of the drugs which are substrates or inhibitors of placental transporters were commonly used during pregnancy. No significant effect of transporter inhibition was found on fetal drug exposure, possibly due to a limited number of exposures.

    Matched MeSH terms: Membrane Transport Proteins/metabolism*
  2. Sabri NA, Shamsuddin SH, Mat Zin AA
    Asian Pac J Cancer Prev, 2024 Feb 01;25(2):521-527.
    PMID: 38415538 DOI: 10.31557/APJCP.2024.25.2.521
    OBJECTIVE: The study aimed to evaluate E6 and E7 oncoproteins of HPV16 and HPV18 expression in formalin - fixed paraffin embedded (FFPE) tissue in different grades of the cervical lesion and evaluate the potential use of E6 and E7 oncoproteins derived from HPV 16 and 18 as diagnostic protein biomarkers for triaging cervical lesions.

    METHODOLOGY: A total of 102 FFPE cervical tissues were collected from 2 tertiary hospitals and immunohistochemical reactivity staining of E6 and E7 oncoproteins of HPV16 and HPV18 were evaluated using immunoreactive scoring (IRS) system and analysed statistically.

    RESULT: The result showed an increased oncoprotein expression with the progression of cervical lesions. There is a statistically significant association between histology grade and HPV16/18-E6 expression (p = 0.028). However, there are no significant association of histological grade to HPV16-E7 immunoreactivity score (p = 0.264) and HPV18-E7 (p=0.080).

    CONCLUSION: The immunohistochemical expression of HPV oncoproteins is a potential alternative diagnostic tool applicable in a low-resource laboratory setting. The advantage of the histochemical evaluation is that this method is simpler to apply and less expensive in comparison to in situ mRNA hybridization. Nevertheless, our study also found that antibodies against HPV that are commercially available suffer quite substantial specificity issues such as background staining and inconsistency between different batches. Hence, the utilization of antibody-based staining warrants stringent quality control.

    Matched MeSH terms: Papillomavirus E7 Proteins/genetics
  3. Mandary MB, Masomian M, Poh CL
    Int J Mol Sci, 2019 Sep 19;20(18).
    PMID: 31546962 DOI: 10.3390/ijms20184657
    RNA viruses are known to replicate by low fidelity polymerases and have high mutation rates whereby the resulting virus population tends to exist as a distribution of mutants. In this review, we aim to explore how genetic events such as spontaneous mutations could alter the genomic organization of RNA viruses in such a way that they impact virus replications and plaque morphology. The phenomenon of quasispecies within a viral population is also discussed to reflect virulence and its implications for RNA viruses. An understanding of how such events occur will provide further evidence about whether there are molecular determinants for plaque morphology of RNA viruses or whether different plaque phenotypes arise due to the presence of quasispecies within a population. Ultimately this review gives an insight into whether the intrinsically high error rates due to the low fidelity of RNA polymerases is responsible for the variation in plaque morphology and diversity in virulence. This can be a useful tool in characterizing mechanisms that facilitate virus adaptation and evolution.
    Matched MeSH terms: Viral Proteins/genetics*
  4. Ahmed I, Muzammal M, Khan MA, Ullah H, Farid A, Yasin M, et al.
    Biochem Genet, 2024 Aug;62(4):2571-2586.
    PMID: 37985543 DOI: 10.1007/s10528-023-10556-w
    Intellectual disability, a genetically and clinically varied disorder and is a significant health problem, particularly in less developed countries due to larger family size and high ratio of consanguineous marriages. In the current genetic study, we investigate and find the novel disease causative factors in the four Pakistani families with severe type of non-syndromic intellectual disability. For genetic analysis whole-exome sequencing (WES) and Sanger sequencing was performed. I-TASSER and Cluspro tools were used for Protein modeling and Protein-protein docking. Sanger sequencing confirms the segregation of novel homozygous variants in all the families i.e., c.245 T > C; p.Leu82Pro in SLC50A1 gene in family 1, missense variant c.1037G > A; p.Arg346His in TARS2 gene in family 2, in family 3 and 4, nonsense mutation c.234G > A; p.Trp78Term and missense mutation c.2200G > A; p.Asp734Asn in TBC1D3 and ANAPC2 gene, respectively. In silico functional studies have found the drastic effect of these mutations on protein structure and its interaction properties. Substituted amino acids were highly conserved and present on highly conserved region throughout the species. The discovery of pathogenic variants in SLC50A1, TARS2, TBC1D1 and ANAPC2 shows that the specific pathways connected with these genes may be important in cognitive impairment. The decisive role of pathogenic variants in these genes cannot be determined with certainty due to lack of functional data. However, exome sequencing and segregation analysis of all filtered variants revealed that the currently reported variants were the only variations from the respective families that segregated with the phenotype in the family.
    Matched MeSH terms: GTPase-Activating Proteins/genetics
  5. Kabir MA, Nandi SK, Suma AY, Abdul Kari Z, Mohamad Sukri SA, Wei LS, et al.
    Appl Biochem Biotechnol, 2024 Oct;196(10):7145-7167.
    PMID: 38489116 DOI: 10.1007/s12010-024-04913-7
    Fish protein hydrolysate (FPH) has shown immense potential as a dietary protein supplement and immunostimulant in aquaculture, especially in Nile tilapia production. Four isoproteic diets (30% crude protein) were prepared by including FPH at varying percentages (0%, 0.5%, 1%, and 2%). Nile tilapia fed with FPH diets for 90 days, and their growth performance, feed utilization, blood biochemistry, liver and gut morphology, and resistance against Streptococcus iniae were investigated. The findings revealed that diets physical attributes such as pellet durability index and water stability were remarkably (p 
    Matched MeSH terms: Fish Proteins/metabolism
  6. Anderson DC, Peterson MS, Lapp SA, Galinski MR
    J Proteomics, 2024 Jun 30;302:105197.
    PMID: 38759952 DOI: 10.1016/j.jprot.2024.105197
    The emerging malaria parasite Plasmodium knowlesi threatens the goal of worldwide malaria elimination due to its zoonotic spread in Southeast Asia. After brief ex-vivo culture we used 2D LC/MS/MS to examine the early and late ring stages of infected Macaca mulatta red blood cells harboring P. knowlesi. The M. mulatta clathrin heavy chain and T-cell and macrophage inhibitor ERMAP were overexpressed in the early ring stage; glutaredoxin 3 was overexpressed in the late ring stage; GO term differential enrichments included response to oxidative stress and the cortical cytoskeleton in the early ring stage. P. knowlesi clathrin heavy chain and 60S acidic ribosomal protein P2 were overexpressed in the late ring stage; GO term differential enrichments included vacuoles in the early ring stage, ribosomes and translation in the late ring stage, and Golgi- and COPI-coated vesicles, proteasomes, nucleosomes, vacuoles, ion-, peptide-, protein-, nucleocytoplasmic- and RNA-transport, antioxidant activity and glycolysis in both stages. SIGNIFICANCE: Due to its zoonotic spread, cases of the emerging human pathogen Plasmodium knowlesi in southeast Asia, and particularly in Malaysia, threaten regional and worldwide goals for malaria elimination. Infection by this parasite can be fatal to humans, and can be associated with significant morbidity. Due to zoonotic transmission from large macaque reservoirs that are untreatable by drugs, and outdoor biting mosquito vectors that negate use of preventive measures such as bed nets, its containment remains a challenge. Its biology remains incompletely understood. Thus we examine the expressed proteome of the early and late ex-vivo cultured ring stages, the first intraerythrocyte developmental stages after infection of host rhesus macaque erythrocytes. We used GO term enrichment strategies and differential protein expression to compare early and late ring stages. The early ring stage is characterized by the enrichment of P. knowlesi vacuoles, and overexpression of the M. mulatta clathrin heavy chain, important for clathrin-coated pits and vesicles, and clathrin-mediated endocytosis. The M. mulatta protein ERMAP was also overexpressed in the early ring stage, suggesting a potential role in early ring stage inhibition of T-cells and macrophages responding to P. knowlesi infection of reticulocytes. This could allow expansion of the host P. knowlesi cellular niche, allowing parasite adaptation to invasion of a wider age range of RBCs than the preferred young RBCs or reticulocytes, resulting in proliferation and increased pathogenesis in infected humans. Other GO terms differentially enriched in the early ring stage include the M. mulatta cortical cytoskeleton and response to oxidative stress. The late ring stage is characterized by overexpression of the P. knowlesi clathrin heavy chain. Combined with late ring stage GO term enrichment of Golgi-associated and coated vesicles, and enrichment of COPI-coated vesicles in both stages, this suggests the importance to P. knowlesi biology of clathrin-mediated endocytosis. P. knowlesi ribosomes and translation were also differentially enriched in the late ring stage. With expression of a variety of heat shock proteins, these results suggest production of folded parasite proteins is increasing by the late ring stage. M. mulatta endocytosis was differentially enriched in the late ring stage, as were clathrin-coated vesicles and endocytic vesicles. This suggests that M. mulatta clathrin-based endocytosis, perhaps in infected reticulocytes rather than mature RBC, may be an important process in the late ring stage. Additional ring stage biology from enriched GO terms includes M. mulatta proteasomes, protein folding and the chaperonin-containing T complex, actin and cortical actin cytoskeletons. P knowlesi biology also includes proteasomes, as well as nucleosomes, antioxidant activity, a variety of transport processes, glycolysis, vacuoles and protein folding. Mature RBCs have lost internal organelles, suggesting infection here may involve immature reticulocytes still retaining organelles. P. knowlesi parasite proteasomes and translational machinery may be ring stage drug targets for known selective inhibitors of these processes in other Plasmodium species. To our knowledge this is the first examination of more than one timepoint within the ring stage. Our results expand knowledge of both host and parasite proteins, pathways and organelles underlying P. knowlesi ring stage biology.
    Matched MeSH terms: Protozoan Proteins/metabolism
  7. Lew CCH, Lee ZY, Day AG, Jiang X, Bear D, Jensen GL, et al.
    Chest, 2024 Jun;165(6):1380-1391.
    PMID: 38354904 DOI: 10.1016/j.chest.2024.02.008
    BACKGROUND: Preexisting malnutrition in critically ill patients is associated with adverse clinical outcomes. Malnutrition can be diagnosed with the Global Leadership Initiative on Malnutrition using parameters such as weight loss, muscle wasting, and BMI. International critical care nutrition guidelines recommend high protein treatment to improve clinical outcomes in critically ill patients diagnosed with preexisting malnutrition. However, this recommendation is based on expert opinion.

    RESEARCH QUESTION: In critically ill patients, what is the association between preexisting malnutrition and time to discharge alive (TTDA), and does high protein treatment modify this association?

    STUDY DESIGN AND METHODS: This multicenter randomized controlled trial involving 16 countries was designed to investigate the effects of high vs usual protein treatment in 1,301 critically ill patients. The primary outcome was TTDA. Multivariable regression was used to identify if preexisting malnutrition was associated with TTDA and if protein delivery modified their association.

    RESULTS: The prevalence of preexisting malnutrition was 43.8%, and the cumulative incidence of live hospital discharge by day 60 was 41.2% vs 52.9% in the groups with and without preexisting malnutrition, respectively. The average protein delivery in the high vs usual treatment groups was 1.6 g/kg per day vs 0.9 g/kg per day. Preexisting malnutrition was independently associated with slower TTDA (adjusted hazard ratio, 0.81; 95% CI, 0.67-0.98). However, high protein treatment in patients with and without preexisting malnutrition was not associated with TTDA (adjusted hazard ratios of 0.84 [95% CI, 0.63-1.11] and 0.97 [95% CI, 0.77-1.21]). Furthermore, no effect modification was observed (ratio of adjusted hazard ratio, 0.84; 95% CI, 0.58-1.20).

    INTERPRETATION: Malnutrition was associated with slower TTDA, but high protein treatment did not modify the association. These findings challenge current international critical care nutrition guidelines.

    CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov; No.: NCT03160547; URL: www.

    CLINICALTRIALS: gov.

    Matched MeSH terms: Dietary Proteins/administration & dosage
  8. Bologna-Molina R, Schuch L, Magliocca K, van Heerden W, Robinson L, Bilodeau EA, et al.
    Oral Dis, 2024 Sep;30(6):3571-3581.
    PMID: 38693620 DOI: 10.1111/odi.14962
    Targeted therapy has the potential to be used in the neoadjuvant setting for odontogenic tumors, reducing the morbidities associated with major surgery. In this regard, the aim of this study was to summarize the current evidence on the different forms of targeted therapy, effectiveness, and drawbacks of this course of treatment. Four databases were searched electronically without regard to publication date or language. Grey literature searches and manual searches were also undertaken. Publications with sufficient clinical data on targeted therapy for odontogenic tumors were required to meet the criteria for eligibility. The analysis of the data was descriptive. A total of 15 papers comprising 17 cases (15 ameloblastomas and 2 ameloblastic carcinomas) were included. Numerous mutations were found, with BRAF V600E being most common. Dabrafenib was the most utilized drug in targeted therapy. Except for one case, the treatment reduced the size of the lesion (16/17 cases), showing promise. Most of the adverse events recorded were mild, such as skin issues, voice changes, abnormal hair texture, dry eyes, and systemic symptoms (e.g., fatigue, joint pain, and nausea). It is possible to reach the conclusion that targeted therapy for ameloblastoma and ameloblastic carcinoma may be a useful treatment strategy, based on the findings of the included studies.
    Matched MeSH terms: Proto-Oncogene Proteins B-raf/genetics
  9. Basheer M, Hassan Z, Gam LH
    Int J Med Sci, 2023;20(1):102-113.
    PMID: 36619231 DOI: 10.7150/ijms.78861
    Background: Mitragyna speciosa Korth or Kratom is widely used traditionally for its medicinal values. The major alkaloid content of kratom leaves is mitragynine, which binds to opioid receptors to give opioid-like effects. This study aimed to analyse the brain proteome of animals that displayed addictive behaviors. Design and Methods: Six groups (n=6-8) of rats made up of negative control, positive control using morphine (10 mg/kg), and treatment groups at low (1mg/kg) and high doses of mitragynine (30 mg/kg) for 1 and 4 days. The rats' behaviors were evaluated and subsequently the rats' brains were harvested for proteomic analysis that was performed by using 2D gel electrophoresis and LC/MS/MS. Results: The rats developed physical dependence only on day 4 following morphine and mitragynine (1 and 30mg/kg) treatments. Among the proteins that were up-regulated in treatment groups were four calcium-binding proteins, namely calretinin, F-actin, annexin A3 and beta-centractin. Conclusions: Upregulation of calretinin acted as low Ca2+ buffering upon the blockage of Ca2+ ion channel by mitragynine in the brain, which subsequently caused a reduction of GABA released and inversely increased the dopamine secretions that contributed to dependence indicators.
    Matched MeSH terms: Calcium-Binding Proteins*
  10. Dissanayake DS, Wijekoon CD, Wegiriya H
    J Vector Borne Dis, 2024 Jan 01;61(1):564-573.
    PMID: 38648407 DOI: 10.4103/0972-9062.392269
    BACKGROUND OBJECTIVES: Dengue and chikungunya infections are one of the major health problems that have plagued the human population globally. All dengue virus (DENV) serotypes circulate within Malaysia with particular serotypes dominating in different years/outbreaks. In the state of Kelantan, an increasing number of DENV and chikungunya virus (CHIKV) new cases have been reported, including several deaths. This study aimed to isolate and detect these arboviruses from adult mosquitoes in Kelantan.

    METHODS: Adult mo squito samples were collected from January to August 2019 and were identified according to gender, species and locality. The isolation of the virus was done in C6/36 cells. Dengue NS1 antigen was carried out using direct mosquito lysate and mosquito culture supernatant. Detection and serotyping of the DENV was performed using multiplex RT-PCR and CHIKV detection using a one-step RT-PCR assay.

    RESULTS: Of 91 mosquito pools, four were positive for NS1 antigen comprising two pools (2.2%) of male Ae. albopictus (Pulau Melaka and Kubang Siput) and two pools (2.2%) of Ae. aegypti (Kampung Demit Sungai). DENV 1 was detected in one pool (0.9%) of female Ae. albopictus among 114 tested Aedes pools. Two pools of 114 pools (1.7%) from both male Aedes species were positive with double serotypes, DENV 1 and DENV 2 (Pulau Melaka). However, no pool was positive for CHIKV.

    INTERPRETATION CONCLUSION: The presence of DENV and the main vectors of arboviruses in Kelantan are pertinent indicators of the need to improve vector controls to reduce arbovirus infections among people in the localities.

    Matched MeSH terms: Viral Nonstructural Proteins/genetics
  11. Wong SF, Mak JW, Pook PC
    PMID: 17877228
    Cell disruption or lysis is a crucial step to obtain cellular components for various biological studies. We subjected different concentrations of Candida albicans to 5, 10, 15 and 20 cycles of disruption. The degree of cell lysis was observed using light microscopy and the yields obtained were measured and analysed. The optimum extraction with 1 x 10(10) yeast cells/ml was achieved after 5 cycles of disruption with 1.0 mm diameter glass beads at 5,000 rpm. Approximately 80% of the cells were lysed and the protein yield was 6,000 microg/ml. SDS-PAGE analysis revealed approximately 25 distinct protein bands with molecular weights ranging from 8 kDa to 220 kDa. We conclude that this mechanical disruption of fungal cells is a rapid, efficient and inexpensive technique for extracting whole cell proteins from yeast cells.
    Matched MeSH terms: Fungal Proteins/isolation & purification*
  12. Masura SS, Shaharuddin NA, Masani MYA, Chan KL, Low EL, Chan PL, et al.
    Transgenic Res, 2024 Oct;33(5):383-397.
    PMID: 39120800 DOI: 10.1007/s11248-024-00396-8
    Root-specific or preferential promoters are essential to genetically modify plants with beneficial root traits. We have characterised the promoter from an oil palm metallothionein gene (EgMT) and performed a serial 5' deletion analysis to identify the region(s) essential for transgenes expression in roots. Stable functional characterisation of tobacco transgenic lines using the T1 generation showed that a deletion construct, designated as RSP-2D (1107 bp), directed strong GUS expression at all stages of root development, particularly in mature roots. Other constructs, RSP-2A (2481 bp) and RSP-2C (1639 bp), drove GUS expression in roots with an intensity lower than RSP-2D. The promoter activity was also detectable in seed pods and immature seeds, albeit at lower levels than CaMV35S. The promoter activity may also be induced by wounding as intact GUS staining was observed at the flower- and leaf-cutting sites of T1 samples carrying either RSP-2C or RSP-2D constructs. The promoter sequence contains cis-acting elements that may act as negative regulators and be responsible for root specificity. The results further indicated that the 5' UTR and ATATT sequences are essential for strong promoter activity. This study highlights the potential of RSP-2D promoter as a tool for modifying root traits through genetic engineering.
    Matched MeSH terms: Plant Proteins/genetics
  13. Xu Y, Yu S, Zou JW, Hu G, Rahman NA, Othman RB, et al.
    PLoS One, 2015;10(11):e0144171.
    PMID: 26636321 DOI: 10.1371/journal.pone.0144171
    The peptides derived from envelope proteins have been shown to inhibit the protein-protein interactions in the virus membrane fusion process and thus have a great potential to be developed into effective antiviral therapies. There are three types of envelope proteins each exhibiting distinct structure folds. Although the exact fusion mechanism remains elusive, it was suggested that the three classes of viral fusion proteins share a similar mechanism of membrane fusion. The common mechanism of action makes it possible to correlate the properties of self-derived peptide inhibitors with their activities. Here we developed a support vector machine model using sequence-based statistical scores of self-derived peptide inhibitors as input features to correlate with their activities. The model displayed 92% prediction accuracy with the Matthew's correlation coefficient of 0.84, obviously superior to those using physicochemical properties and amino acid decomposition as input. The predictive support vector machine model for self- derived peptides of envelope proteins would be useful in development of antiviral peptide inhibitors targeting the virus fusion process.
    Matched MeSH terms: Viral Envelope Proteins/antagonists & inhibitors*; Viral Envelope Proteins/metabolism; Viral Envelope Proteins/chemistry
  14. Wahab RA, Basri M, Rahman RN, Salleh AB, Rahman MB, Chaibakhsh N, et al.
    Biotechnology, biotechnological equipment, 2014 Nov 02;28(6):1065-1072.
    PMID: 26740782
    Most substrate for esterification has the inherent problem of low miscibility which requires addition of solvents into the reaction media. In this contribution, we would like to present an alternative and feasible option for an efficient solvent-free synthesis of menthyl butyrate using a novel thermostable crude T1 lipase. We investigated the effects of incubation time, temperature, enzyme loading and substrate molar ratio and determined the optimum conditions. The high conversion of menthyl butyrate catalyzed by crude T1 lipase in a solvent-free system is greatly affected by temperature and time of the reaction media. The highest yield of menthyl butyrate was 99.3% under optimized conditions of 60 °C, incubation time of 13.15 h, 2.53 mg, 0.43% (w/w) enzyme to substrate ratio and at molar ratio of butyric anhydride/menthol 2.7:1. Hence, the investigation revealed that the thermostable crude T1 lipase successfully catalyzed the high-yield production of menthyl butyrate in a solvent-free system. The finding suggests that the crude T1 lipase was a promising alternative to overcome shortcomings associated with solvent-assisted enzymatic reactions.
    Matched MeSH terms: Bacterial Proteins
  15. Sahebi M, Hanafi MM, Siti Nor Akmar A, Rafii MY, Azizi P, Idris AS
    Gene, 2015 Feb 10;556(2):170-81.
    PMID: 25479011 DOI: 10.1016/j.gene.2014.11.055
    Silicon (Si) plays an important role in reducing plant susceptibility against a variety of different biotic and abiotic stresses; and also has an important regulatory role in soil to avoid heavy metal toxicity and providing suitable growing conditions for plants. A full-length cDNAs of 696bp of serine-rich protein was cloned from mangrove plant (Rhizophora apiculata) by amplification of cDNA ends from an expressed sequence tag homologous to groundnut (Arachis hypogaea), submitted to NCBI (KF211374). This serine-rich protein gene encodes a deduced protein of 223 amino acids. The transcript titre of the serine-rich protein was found to be strongly enriched in roots compared with the leaves of two month old mangrove plants and expression level of this serine-rich protein was found to be strongly induced when the mangrove seedlings were exposed to SiO2. Expression of the serine-rich protein transgenic was detected in transgenic Arabidopsis thaliana, where the amount of serine increased from 1.02 to 37.8mg/g. The same trend was also seen in Si content in the roots (14.3%) and leaves (7.4%) of the transgenic A. thaliana compared to the wild-type plants under Si treatment. The biological results demonstrated that the accumulation of the serine amino acid in the vegetative tissues of the transgenic plants enhanced their ability to absorb and accumulate more Si in the roots and leaves and suggests that the serine-rich protein gene has potential for use in genetic engineering of different stress tolerance characteristics.
    Matched MeSH terms: Plant Proteins/genetics*; Plant Proteins/metabolism*; Plant Proteins/chemistry
  16. Tohyama J, Nakashima M, Nabatame S, Gaik-Siew C, Miyata R, Rener-Primec Z, et al.
    J Hum Genet, 2015 Apr;60(4):167-73.
    PMID: 25631096 DOI: 10.1038/jhg.2015.5
    Recent progress in genetic analysis reveals that a significant proportion of cryptogenic epileptic encephalopathies are single-gene disorders. Mutations in numerous genes for early-onset epileptic encephalopathies have been rapidly identified, including in SPTAN1, which encodes α-II spectrin. The aim of this review is to delineate SPTAN1 encephalopathy as a distinct clinical syndrome. To date, a total of seven epileptic patients with four different in-frame SPTAN1 mutations have been identified. The major clinical features of SPTAN1 mutations include epileptic encephalopathy with hypsarrhythmia, no visual attention, acquired microcephaly, spastic quadriplegia and severe intellectual disability. Brainstem and cerebellar atrophy and cerebral hypomyelination, as observed by magnetic resonance imaging, are specific hallmarks of this condition. A milder variant is characterized by generalized epilepsy with pontocerebellar atrophy. Only in-frame SPTAN1 mutations in the last two spectrin repeats in the C-terminal region lead to dominant negative effects and these specific phenotypes. The last two spectrin repeats are required for α/β spectrin heterodimer associations and the mutations can alter heterodimer formation between the two spectrins. From these data we suggest that SPTAN1 encephalopathy is a distinct clinical syndrome owing to specific SPTAN1 mutations. It is important that this syndrome is recognized by pediatric neurologists to enable proper diagnostic work-up for patients.
    Matched MeSH terms: Carrier Proteins/genetics*; Microfilament Proteins/genetics*
  17. Yokoyama Y, Ohtaki A, Jantan I, Yohda M, Nakamoto H
    J. Biochem., 2015 Mar;157(3):161-8.
    PMID: 25294885 DOI: 10.1093/jb/mvu061
    Hsp90 is an ATP-dependent molecular chaperone that is involved in important cellular pathways such as signal transduction pathways. It is a potential cancer drug target because it plays a critical role for stabilization and activation of oncoproteins. Thus, small molecule compounds that control the Hsp90 function are useful to elucidate potential lead compounds against cancer. We studied effect of a naturally occurring styryl-lactone goniothalamin on the activity of Hsp90. Although many drugs targeting Hsp90 inhibit the ATPase activity of Hsp90, goniothalamin enhanced rather than inhibited the ATPase activity of a cyanobacterial Hsp90 (HtpG) and a yeast Hsp90. It increased both K(m) and k(cat) of the Hsp90s. Domain competition assays and tryptophan fluorescence measurements with various truncated derivatives of HtpG indicated that goniothalamin binds to the N-terminal domain of HtpG. Goniothalamin did not influence on the interaction of HtpG with a non-native protein or the anti-aggregation activity of HtpG significantly. However, it inhibited the activity of HtpG that assists refolding of a non-native protein in cooperation with the Hsp70 chaperone system. This is the first report to show that a small molecule that binds to the N-terminal domain of Hsp90 activates its ATPase activity, while inhibiting the chaperone function of Hsp90.
    Matched MeSH terms: Bacterial Proteins/chemistry*; HSP90 Heat-Shock Proteins/chemistry*
  18. Kamba AS, Ismail M, Ibrahim TA, Zakaria ZA, Gusau LH
    Biomed Res Int, 2014;2014:391869.
    PMID: 25028650 DOI: 10.1155/2014/391869
    Bones are the most frequent site for breast cancer cells to settle and spread (metastasise); bone metastasis is considered to have a substantial impact on the quality of patients with common cancers. However, majority of breast cancers develop insensitivity to conventional chemotherapy which provides only palliation and can induce systemic side effects. In this study we evaluated the effect of free Dox and CaCO3/Dox nanocrystal on MCF-7 breast cancer using MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide), neural red, and lactate dehydrogenase colorimetric assays while DNA fragmentation and BrdU genotoxicity were also examined. Apoptogenic protein Bax, cytochrome C, and caspase-3 protein were analysed. Morphological changes of MCF-7 were determined using contrast light microscope and scanning and transmission electron microscope (SEM and TEM). The findings of the analysis revealed higher toxicity of CaCO3/Dox nanocrystal and effective cells killing compared to free Dox, morphological changes such as formation of apoptotic bodies, membrane blebbing, and absent of microvilli as indicated by the SEM analysis while TEM revealed the presence of chromatin condensation, chromosomal DNA fragmentation, cell shrinkage, and nuclear fragmentation. Results of TUNEL assay verified that most of the cells undergoes apoptosis by internucleosomal fragmentation of genomic DNA whereas the extent of apoptotic cells was calculated using the apoptotic index (AI). Therefore, the biobased calcium carbonate nanocrystals such as Dox carriers may serve as an alternative to conventional delivery system.
    Matched MeSH terms: Neoplasm Proteins/metabolism*; Mitochondrial Proteins/metabolism*
  19. Chin CF, Teh BA, Anthony AA, Aziah I, Ismail A, Ong EB, et al.
    Appl Biochem Biotechnol, 2014 Nov;174(5):1897-906.
    PMID: 25149461 DOI: 10.1007/s12010-014-1173-y
    In our earlier study, an immunoblot analysis using sera from febrile patients revealed that a 50-kDa band from an outer membrane protein fraction of Salmonella enterica serovar Typhi was specifically recognized only by typhoid sera and not sera from other febrile illnesses. Here, we investigated the identities of the proteins contained in the immunogenic 50-kDa band to pinpoint antigens responsible for its immunogenicity. We first used LC-MS/MS for protein identification, then used the online tool ANTIGENpro for antigenicity prediction and produced recombinant proteins of the lead antigens for validation in an enzyme-linked immunosorbent assay (ELISA). We found that proteins TolC, GlpK and SucB were specific to typhoid sera but react to antibodies differently under native and denatured conditions. This difference suggests the presence of linear and conformational epitopes on these proteins.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/immunology*; Bacterial Outer Membrane Proteins/isolation & purification; Bacterial Outer Membrane Proteins/chemistry*
  20. Citartan M, Gopinath SCB, Chen Y, Lakshmipriya T, Tang TH
    Biosens Bioelectron, 2015 Jan 15;63:86-98.
    PMID: 25058943 DOI: 10.1016/j.bios.2014.06.068
    The illegal administration of recombinant human erythropoietin (rHuEPO) among athletes is largely preferred over blood doping to enhance stamina. The advent of recombinant DNA technology allowed the expression of EPO-encoding genes in several eukaryotic hosts to produce rHuEPO, and today these performance-enhancing drugs are readily available. As a mimetic of endogenous EPO (eEPO), rHuEPO augments the oxygen carrying capacity of blood. Thus, monitoring the illicit use of rHuEPO among athletes is crucial in ensuring an even playing field and maintaining the welfare of athletes. A number of rHuEPO detection methods currently exist, including measurement of hematologic parameters, gene-based detection methods, glycomics, use of peptide markers, electrophoresis, isoelectric focusing (IEF)-double immunoblotting, aptamer/antibody-based methods, and lateral flow tests. This review gleans these different strategies and highlights the leading molecular recognition elements that have potential roles in rHuEPO doping detection.
    Matched MeSH terms: Recombinant Proteins/administration & dosage; Recombinant Proteins/adverse effects; Recombinant Proteins/blood*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links