Displaying publications 881 - 900 of 2497 in total

Abstract:
Sort:
  1. Abdullahi SA, Unyah NZ, Nordin N, Basir R, Nasir WM, Alapid AA, et al.
    Mini Rev Med Chem, 2020;20(9):739-753.
    PMID: 31660810 DOI: 10.2174/1389557519666191029105736
    Identification of drug target in protozoan T. gondii is an important step in the development of chemotherapeutic agents. Likewise, exploring phytochemical compounds effective against the parasite can lead to the development of new drug agent that can be useful for prophylaxis and treatment of toxoplasmosis. In this review, we searched for the relevant literature on the herbs that were tested against T. gondii either in vitro or in vivo, as well as different phytochemicals and their potential activities on T. gondii. Potential activities of major phytochemicals, such as alkaloid, flavonoid, terpenoids and tannins on various target sites on T. gondii as well as other related parasites was discussed. It is believed that the phytochemicals from natural sources are potential drug candidates for the treatment of toxoplasmosis with little or no toxicity to humans.
    Matched MeSH terms: Plant Extracts/pharmacology; Plant Extracts/therapeutic use; Plant Extracts/chemistry*
  2. Ling SK, Pisar MM, Man S
    Biol Pharm Bull, 2007 Jun;30(6):1150-2.
    PMID: 17541171
    The leaf, stem and root extracts of Chromolaena odorata were evaluated for their effect on platelet-activating factor (PAF) receptor binding on rabbit platelets using 3H-PAF as a ligand. The leaf extract demonstrated high PAF receptor binding inhibitory activity of 79.2+/-2.1% at 18.2 microg/ml. A total of eleven flavonoids were subsequently isolated from the active leaf extract and evaluated for their effects on PAF receptor binding. Eight of the flavonoids exhibited >50% inhibition on the binding activity at 18.2 microg/ml. These flavonoids were identified as eriodictyol 7,4'-dimethyl ether, quercetin 7,4'-methyl ether, naringenin 4'-methyl ether, kaempferol 4'-methyl ether, kaempferol 3-O-rutinoside, taxifolin 4'-methyl ether, taxifolin 7-methyl ether and quercetin 4'-methyl ether. Their IC50 values ranged from 19.5 to 62.1 microM.
    Matched MeSH terms: Plant Extracts/metabolism; Plant Extracts/pharmacology*; Plant Extracts/chemistry
  3. Mohd Jusoh NH, Subki A, Yeap SK, Yap KC, Jaganath IB
    BMC Chem, 2019 Dec;13(1):134.
    PMID: 31891160 DOI: 10.1186/s13065-019-0653-0
    Background: Safety, environmental and economic setbacks are driving industries to find greener approaches to extract bioactive compounds from natural resources. Pressurized hot water extraction (PHWE) is among the solvent free and efficient methods for extracting bioactive compounds.

    Experimental: In this study, the suitability of PHWE for extracting bioactive compounds such as phenolics, hydrolysable tannins and flavonoids from Phyllanthus tenellus was investigated by UPLC-qTOF-MS.

    Results: Solvent properties of water are significantly increased through imposing temperature at 121 °C and pressure at 15 p.s.i. Pressurized hot water extraction obtained 991-folds higher hydrolysable tannins than methanol extraction.

    Conclusion: The extraction yields of hydrolysable tannins with PHWE was almost double of absolute methanol extraction.

    Matched MeSH terms: Plant Extracts
  4. Tang PL, Hassan O
    BMC Chem, 2020 Dec;14(1):7.
    PMID: 32043090 DOI: 10.1186/s13065-020-0663-y
    This study was conducted to evaluate the potential of pineapple peel (PP) and pineapple crown leaves (PCL) as the substrate for vanillic acid and vanillin production. About 202 ± 18 mg L-1 and 120 ± 11 mg L-1 of ferulic acid was produced from the PP and PCL respectively. By applied response surface methodology, the ferulic acid yield was increased to 1055 ± 160 mg L-1 by treating 19.3% of PP for 76 min, and 328 ± 23 mg L-1 by treating 9.9% of PCL for 36 min in aqueous sodium hydroxide solution at 120 °C. The results revealed that PP extract was better than PCL extract for vanillic acid and vanillin production. Furthermore, the experiment also proved that large volume feeding was more efficient than small volume feeding for high vanillic acid and vanillin yield. Through large volume feeding, about 7 ± 2 mg L-1 of vanillic acid and 5 ± 1 mg L-1 of vanillin was successfully produced from PP extract via Aspergillus niger fermentation.
    Matched MeSH terms: Plant Extracts
  5. Abd Gani SS, Basri M, Rahman MB, Kassim A, Abd Rahman RN, Salleh AB, et al.
    Biosci Biotechnol Biochem, 2010;74(6):1188-93.
    PMID: 20530909
    Formulations containing engkabang fat and engkabang fat esters, F10 and E15 respectively were prepared using a high-shear homogenizer, followed by a high-pressure homogenizer. Both formulations were stable at room temperature, at 45 degrees C, and after undergoing freeze-thaw cycles. The particle sizes of F10 and E15 after high pressure were 115.75 nm and 148.41 nm respectively. The zeta potentials of F10 and E15 were -36.4 mV and -48.8 mV respectively, while, the pH values of F10 and E15 were 5.59 and 5.81 respectively. The rheology of F10 and E15 showed thixotropy and pseudoplastic behavior respectively. There were no bacteria or fungal growths in the samples. The short-term moisturizing effect on 20 subjects analyzed by analysis of variance (ANOVA), gave p-values of 7.35 x 10(-12) and 2.77 x 10(-15) for F10 and E15 respectively. The hydration of the skins increased after application of F10 and E15 with p-value below 0.05.
    Matched MeSH terms: Plant Extracts/pharmacology*; Plant Extracts/toxicity; Plant Extracts/chemistry*
  6. Bakar, J., Abdul Kadir, N. S., Ahmad Mazlan, A. S., Ismail Fitry, M. R.
    MyJurnal
    The quality change of fish sausage (keropok lekor) coated in sago starch-gelatine coating with
    papaya seed extract (PSE) during chill storage (7°C) was determined. During storage, pH,
    thiobarbituric acid value (TBA), colour, moisture, and the total plate count were evaluated. pH
    of samples significantly dropped (p < 0.05) during storage, and the highest decrease was in
    control sample. The moisture content in control sample had an increasing trend while that of
    samples with 5 and 7% PSE coatings significantly decreased, and only a slight change for
    samples with 0% PSE coating. All samples had significant increase in their TBA values during
    storage. The presence of the coating provided a positive effect on the colour of the fish sausages since no significant colour changes were observed during storage. TPC of control and
    coated sausage in 0, 5, and 7% PSE exceeded the recommended microbial standard after 2, 6,
    8, and 4 d of storage, respectively. Overall, coating with 5% of PSE was the most effective in
    retarding the quality deterioration of the fish sausages.
    Matched MeSH terms: Plant Extracts
  7. Khaw KY, Chong CW, Murugaiyah V
    J Enzyme Inhib Med Chem, 2020 Dec;35(1):1433-1441.
    PMID: 32608273 DOI: 10.1080/14756366.2020.1786819
    Mangosteen is one of the best tasting tropical fruit widely cultivated in Southeast Asia. This study aimed to quantify xanthone content in different parts of Garcinia mangostana by LC-QTOF-MS and determine its influence on their cholinesterase inhibitory activities. The total xanthone content in G. mangostana was in the following order: pericarp > calyx > bark > stalk > stem > leaves > aril. The total xanthone content of pericarp was 100 times higher than the aril. Methanol extracts of the pericarp and calyx demonstrated the most potent inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 values of 0.90 and 0.37 µg/mL, respectively. Statistical analysis showed a strong correlation between xanthone content and cholinesterase inhibition. Nonmetric multidimensional scaling analysis revealed α-mangostin and γ-mangostin of pericarp as the key metabolites contributing to cholinesterase inhibition. Due to the increasing demand of mangosteen products, repurposing of fruit waste (pericarp) has great potential for enhancement of the cognitive health of human beings.
    Matched MeSH terms: Plant Extracts/isolation & purification; Plant Extracts/pharmacology*; Plant Extracts/chemistry
  8. NOR AMIRA IZATI NOR AZMAN, NUR FAZLEEN SYUHADA ROSTAM, NURUL FAZIHA IBRAHIM, SUHAIZAN LOB
    MyJurnal
    Soft fleshed tomatoes are easily damaged due to mechanical injuries. Later, the wounded tissue will be exposed to fungal infection thus fasten the deterioration rate and reduce the quality of tomato. The aim of this study was to evaluate the potential aqueous ginger extract to inhibit fungal pathogen that causes tomato wilt and its potential in delaying the weight loss of tomato fruits. For this purpose, in vitro antifungal assay using poison plate technique was used to observe the inhibition of fungal pathogen. Then, healthy tomato fruits were dipped in aqueous ginger extract before evaluated for the post-harvest quality such as weight loss and firmness. The results of this study show that 10% aqueous ginger extract can inhibit the fungal pathogen (Fusarium oxysporum) that causes tomato wilt with 13.57% inhibition. Through in vivo antifungal assay, tomato fruits dipped in this plant extract showed lower weight loss (14.44%) and higher firmness (1.7 N) as compared to untreated fruit, but the data were not significantly different. Therefore, manipulation of this extract was suggested to increase its antifungal properties or as eco-friendly coating to lengthen the shelf life of agricultural produces.
    Matched MeSH terms: Plant Extracts
  9. Mitsuwan W, Sangkanu S, Romyasamit C, Kaewjai C, Jimoh TO, de Lourdes Pereira M, et al.
    PMID: 33238231 DOI: 10.1016/j.ijpddr.2020.11.001
    Curcuma longa and Curcumin have been documented to have a wide spectrum of pharmacological effects, including anti-Acanthamoeba activity. Hence, this study sought to explore the anti-adhesion activity of C. longa extract and Curcumin against Acanthamoeba triangularis trophozoites and cysts in plastic and contact lenses. Our results showed that C. longa extract and Curcumin significantly inhibited the adhesion of A. triangularis trophozoites and cysts to the plastic surface, as investigated by the crystal violet assay (P 
    Matched MeSH terms: Plant Extracts
  10. Ng CM, Kaur S, Koo HC, Mukhtar F
    J Hum Nutr Diet, 2021 May 03.
    PMID: 33938062 DOI: 10.1111/jhn.12911
    BACKGROUND: Emerging research has explored hands-on meal preparation as a strategy to improve children's nutrition-related outcomes. This scoping review was conducted to describe the extent of studies on children's involvement in hands-on meal preparation and the related psychosocial outcomes, actual nutrition behaviour/food consumption and weight status.

    METHODS: Scoping review methodology was used to select relevant studies, as well as extract and collate the data. Four databases (PubMed, Google Scholar, Science Direct and Cochrane Database of Systematic Reviews) were searched from the earliest available time up to December 2020. Observational studies, experimental studies and reviews that were conducted among children aged 5-12 years old and published from 2010 to 2020 were retrieved. Studies extracted involved children in hands-on healthy meal preparation activities and explored the associated nutrition outcomes.

    RESULTS: In total, 28 studies (5 observational studies, 21 experimental studies, 2 reviews) were included in the final review. Studies conducted demonstrated improvement in children's psychosocial outcomes and actual nutrition behaviour/food consumption after participating in hands-on meal preparation activities, despite differences in methodology, programme content and settings (countries/cultural origins). Limited studies assessed children's nutrients intake and weight status.

    CONCLUSIONS: The current review suggests that hands-on meal preparation comprises approach for instilling positive perceptions towards nutrition/healthy foods, potentially improving children's diet. Future studies should include the assessment of nutrient intake and weight status. The long-term sustainability of these nutrition outcomes should be explored.

    Matched MeSH terms: Plant Extracts
  11. Abdullah FH, Abu Bakar NHH, Abu Bakar M
    J Hazard Mater, 2021 03 15;406:124779.
    PMID: 33338763 DOI: 10.1016/j.jhazmat.2020.124779
    Zinc oxide (ZnO) photocatalysts were successfully synthesized via chemical and green, environmentally-benign methods. The work highlights the valorization of banana peel (BP) waste extract as the reducing and capping agents to produce pure, low temperature, highly crystalline, and effective ZnO nanoparticles with superior photocatalytic activities for the removal of hazardous Basic Blue 9 (BB9), crystal violet (CV), and cresol red (CR) dyes in comparison to chemically synthesized ZnO. Their formation and morphologies were verified by various optical spectroscopic and electron microscopic techniques. XRD results revealed that the biosynthesized ZnO exhibited 15.3 nm crystallite size when determined by Scherrer equation, which was smaller than the chemically synthesized ZnO. The FTIR spectra confirmed the presence of biomolecules in the green-mediated catalyst. EDX and XPS analyses verified the purity and chemical composition of ZnO. Nitrogen sorption analysis affirmed the high surface area of bio-inspired ZnO. Maximum removal efficiencies were achieved with 30 mg green ZnO catalyst, 2.0 × 10-5 M BB9 solution, alkaline pH 12, and irradiation time 90 min. Green-mediated ZnO showed superior photodegradation efficiency and reusability than chemically synthesized ZnO. Therefore, this economical, environment-friendly photocatalyst is applicable for the removal of organic contaminants in wastewater treatment under visible light irradiation.
    Matched MeSH terms: Plant Extracts
  12. Ahmad MN, Karim NU, Normaya E, Mat Piah B, Iqbal A, Ku Bulat KH
    Sci Rep, 2020 06 12;10(1):9566.
    PMID: 32533034 DOI: 10.1038/s41598-020-66488-7
    Lipid oxidation and microbial contamination are the major factors contributing to food deterioration. Food additives like antioxidants and antibacterials can prevent food spoilage by delaying oxidation and preventing the growth of bacteria. Artocarpus altilis leaves exhibited biological properties that suggested its use as a new source of natural antioxidant and antimicrobial. Supercritical fluid extraction (SFE) was used to optimize the extraction of bioactive compounds from the leaves using response surface methodology (yield and antioxidant activity). The optimum SFE conditions were 50.5 °C temperature, 3784 psi pressure and 52 min extraction time. Verification test results (Tukey's test) showed that no significant difference between the expected and experimental DPPH activity and yield value (99%) were found. Gas-chromatography -mass spectrometry (GC-MS) analysis revealed three major bioactive compounds existed in A. altilis extract. The extract demonstrated antioxidant and antibacterial properties with 2,3-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, ferric reducing ability of plasma (FRAP), hydroxyl radical scavenging activity, tyrosinase mushrrom inhibition of 41.5%, 8.15 ± 1.31 (µg of ascorbic acid equivalents), 32%, 37% and inhibition zone diameter of 0.766 ± 0.06 cm (B. cereus) and 1.27 ± 0.12 cm (E. coli). Conductor like screening model for real solvents (COSMO RS) was performed to explain the extraction mechanism of the major bioactive compounds during SFE. Molecular electrostatic potential (MEP) shows the probability site of nucleophilic and electrophilic attack during bacterial inhibition. Based on molecular docking study, non-covalent interactions are the main interaction occurring between the major bioactive compounds and bacteria (antibacterial inhibition).
    Matched MeSH terms: Plant Extracts/isolation & purification; Plant Extracts/pharmacology*; Plant Extracts/chemistry
  13. Ahmad Shahabuddin F, Wah KY, Buji RI, Zulkafli NS, Lee SW, Soon HL, et al.
    BJPsych Int, 2020 May;17(2):43-44.
    PMID: 32558818 DOI: 10.1192/bji.2019.29
    We used medical record abstraction to conduct research in a psychiatric hospital with paper-based medical records. The challenges we encountered included: the difficulty in retrieving files; the extensive effort and time needed to extract clinical information; the lack of a standardised documentation system of medical records; and the need for advanced computer literacy. To promote future research using electronic medical records, potential solutions include creating a registry of all patients receiving treatment, as well as equipping busy clinicians with computer skills.
    Matched MeSH terms: Plant Extracts
  14. Yashni G, Al-Gheethi A, Radin Mohamed RMS, Dai-Viet NV, Al-Kahtani AA, Al-Sahari M, et al.
    Chemosphere, 2021 Oct;281:130661.
    PMID: 34029959 DOI: 10.1016/j.chemosphere.2021.130661
    Textile industry is one of the most environmental unfriendly industrial processes due to the massive generation of colored wastewater contaminated with dyes and other chemical auxiliaries. These contaminants are known to have undesirable consequences to ecosystem. The present study investigated the best operating parameters for the removal of congo red (CR, as the model for dye wastewater) by orange peels extract biosynthesized zinc oxide nanoparticles (ZnO NPs) via photocatalysis in an aqueous solution. The response surface methodology (RSM) with ZnO NPs loadings (0.05-0.20 g), pH (3.00-11.00), and initial CR concentration (5-20 ppm) were used for the optimization process. The applicability of ZnO NPs in the dye wastewater treatment was evaluated based on the techno-economic analysis (TEA). ZnO NPs exhibited hexagonal wurtzite structure with = C-H, C-O, -C-O-C, CC, O-H as the main functional groups. The maximum degradation of CR was more than 96% with 0.171 g of ZnO NPs, at pH 6.43 and 5 ppm of CR and 90% of the R2 coefficient. The specific cost of ZnO NPs production is USD 20.25 per kg. These findings indicated that the biosynthesized ZnO NPs with orange peels extract provides alternative method for treating dye wastewater.
    Matched MeSH terms: Plant Extracts
  15. Zuharah WF, Thiagaletchumi M, Fadzly N
    Trop Life Sci Res, 2016 Aug;27(2):91-102.
    PMID: 27688853 MyJurnal DOI: 10.21315/tlsr2016.27.2.7
    The interaction between plants and insects is dynamic, and may favour either the plant or the insect. Plant chemicals are deeply implicated in this relationship and influence insect behaviour. Here, we investigated the oviposition behaviour response of Culex quinquefasciatus mosquitoes based on the colour cues produced by Ipomoea cairica leaves extract. In this study, two sets of oviposition choice experiments were conducted: (1) single solution in a cage; and (2) multiple concentration solutions in a cage. In the single solution experiment, only 1 available oviposition site was offered to 5 gravid females and in the multiple concentration tests, 4 available oviposition sites were offered to 20 gravid females. The tested concentrations were set up at 100 mL of: (1) control (distilled water only); (2) 50 ppm; (3) 150 ppm; and (4) 300 ppm of I. cairica plant extracts. The highest concentration of 300 ppm appeared to show the highest intensity with the darkest colour followed by 150 ppm and 50 ppm concentrations. More gravid females were found drowned in the highest concentration, 300 ppm of acethonilic leaves extract, compared to 150 ppm and 50 ppm of the tested extract. No eggs were found in all tested solutions. The studied extract was found to effectively attract gravid Cx. quinquefasciatus females and subsequently cause mortality and inhibit egg deposition. The interference caused by the acethonilic extract of I. cairica on the oviposition activity of Cx. quinquefasciatus can result in better control of the vector insect.
    Matched MeSH terms: Plant Extracts
  16. Lee SY, Turjaman M, Mohamed R
    Trop Life Sci Res, 2018 Jul;29(2):13-28.
    PMID: 30112138 MyJurnal DOI: 10.21315/tlsr2018.29.2.2
    Indonesia is home to several tree taxa that are harvested for agarwood. This highly valuable oleoresin ironically was the cause for some species to become vulnerable due to gluttonous human activity. However, information on the genetic diversity of these endangered trees is limited. In this study, 28 specimens representing eight species from two genera, Aquilaria and Gyrinops, were collected from ex-situ and in-situ populations in Indonesia. Phylogenetic analysis conducted on DNA sequences of the nuclear ribosomal internal transcribed spacer (ITS) and the trnL-trnF intergenic spacer regions, revealed that Aquilaria and Gyrinops are paraphyletic when Aquilaria cumingiana is excluded. The phylogenetic analysis for ITS and trnL-trnF showed capability to categorise agarwood-producing species based on their regions: East Indonesia and West Indonesia, using Wallace's Line as the divider. In addition, we discuss challenges in species identification and taxonomy of agarwood-producing genera, and their conservation efforts in Indonesia.
    Matched MeSH terms: Plant Extracts
  17. Yap ACS, Li X, Yap YHY, Razif MFM, Jamil AHA, Ng ST, et al.
    Int J Med Mushrooms, 2020;22(10):967-977.
    PMID: 33426826 DOI: 10.1615/IntJMedMushrooms.2020036351
    Ophiocordyceps sinensis (=Cordyceps sinensis) has been known for its various medicinal properties, in particular immunomodulatory activities associated with its polysaccharides. In this study, the fruiting body of O. sinensis cultivar OCS02® was investigated for its chemical composition and monosaccharide profile. Cold water extract (CWE) obtained from this fruiting body was fractionated by molecular weight (MW) into high (HMW), medium (MMW), and low (LMW) fractions. Polysaccharides in the extract and fractions were identified as heteroglycans containing mostly glucose and mannose with small amounts of galactose, fucose, arabinose, and xylose. The immunomodulatory potential of these heteroglycans was evaluated by induction of cytokine/chemokine secretion using murine macrophage RAW 264.7. All treatments showed significant modulation of IL-6, IL-9, MIP-2, and TIMP-1, especially for CWE, HMW, and MMW, which might be due to their high ratios of glucose and the presence of protein. Further investigation on the structure-function relationship of these fruiting body polysaccharide fractions is needed to delineate the underlying mechanism of their immunomodulatory effect both in vitro and in vivo.
    Matched MeSH terms: Plant Extracts/isolation & purification; Plant Extracts/pharmacology*; Plant Extracts/chemistry
  18. Rothan HA, Zulqarnain M, Ammar YA, Tan EC, Rahman NA, Yusof R
    Trop Biomed, 2014 Jun;31(2):286-96.
    PMID: 25134897 MyJurnal
    Dengue virus infects millions of people worldwide and there is no vaccine or anti-dengue therapeutic available. Screening large numbers of medicinal plants for anti-dengue activities is an alternative strategy in order to find the potent therapeutic compounds. Therefore, this study was designed to identify anti-dengue activities in nineteen medicinal plant extracts that are used in traditional medicine. Local medicinal plants Vernonia cinerea, Hemigraphis reptans, Hedyotis auricularia, Laurentia longiflora, Tridax procumbers and Senna angustifolia were used in this study. The highest inhibitory activates against dengue NS2B-NS3pro was observed in ethanolic extract of S. angustifolia leaves, methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems. These findings were further verified by in vitro viral inhibition assay. Methanolic extract of V. cinerea leaves, ethanol extract of T. procumbens stems and at less extent ethanolic extract of S. angustifolia leaves were able to maintain the normal morphology of DENV2-infected Vero cells without causing much cytopathic effects (CPE). The percentage of viral inhibition of V. cinerea and T. procumbens extracts were significantly higher than S. angustifolia extract as measured by plaque formation assay and RT-qPCR. In conclusion, The outcome of this study showed that the methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems possessed high inhibitory activates against dengue virus that worth more investigation.
    Matched MeSH terms: Plant Extracts/isolation & purification; Plant Extracts/pharmacology*; Plant Extracts/toxicity
  19. Basripuzi HB, Sani RA, Ariff OM, Chandrawathani P
    Trop Biomed, 2013 Sep;30(3):516-25.
    PMID: 24189681 MyJurnal
    A study was conducted to evaluate the anthelmintic properties of enhanced virgin coconut oil (EVCO) and senduduk (Melastoma malabathricum) plant against strongyle nematodes in goats. Two preparations of 10% EVCO dissolved in 90% virgin coconut oil and 10% EVCO dissolved in 90% palm oil, were given orally to two groups of mixed breeds goats. The efficacy test indicated that EVCO was insufficiently active as an anthelmintic. Four concentrations of senduduk solution (1.25, 2.5, 5.0 and 10 mg ml(-1)) were compared with a control and albendazole in an in vitro test for larvicidal effect. There was no significant larval mortality using senduduk solution. An in vivo test of senduduk was conducted by comparing three groups of goats, namely control, levamisole and treatment groups that were given a daily oral dose of senduduk crude extract with 1g kg(-1) from Day 0 to Day 12 and 2 g kg(-1) from Day 13 to Day 30. This efficacy test with senduduk also gave negative results. The findings obtained indicated that EVCO and senduduk were ineffective as anthelmintics against caprinestrongyle nematodes at the concentrations used.
    Matched MeSH terms: Plant Extracts/isolation & purification; Plant Extracts/pharmacology; Plant Extracts/therapeutic use*
  20. Sahgal G, Ramanathan S, Sasidharan S, Mordi MN, Ismail S, Mansor SM
    Trop Biomed, 2011 Apr;28(1):132-7.
    PMID: 21602779 MyJurnal
    Swietenia mahogani crude methanolic (SMCM) seed extract was investigated for the antifungal activity against Candida albicans which has not been evaluated previously. The antifungal activity was evaluated against C. albicans via disk diffusion, minimum inhibition concentration (MIC), scanning electron microscope (SEM), transmission electron microscope (TEM) and time killing profile. The MIC value of SMCM seed extract is 12.5 mg/ml. The SEM and TEM findings showed there is morphological changes and cytological destruction of C. albicans at the MIC value. Animal model was used to evaluate the in vivo antifungal activity of SMCM seed extract. The colony forming unit (CFU) were calculated per gram of kidney sample and per ml of blood sample respectively for control, curative and ketaconazole treated groups. There was significant reduction for the CFU/ml of blood and CFU/g of kidney. This indicated that the extract was observed to be effective against C. albicans in vitro and in vivo conditions.
    Matched MeSH terms: Plant Extracts/isolation & purification; Plant Extracts/pharmacology; Plant Extracts/therapeutic use*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links