METHODS: In 20 patients undergoing cardiac surgery in sevoflurane-remifentanil anesthesia, we analyzed intraoperative S' values which were determined after 10 min exposure to sevoflurane at 1.0, 2.0, and 3.0 inspired-vol% (T1, T2, and T3, respectively) with a fixed remifentanil dose (1.0 μg/kg/min) using transesophageal echocardiography.
RESULTS: Linear mixed-effect modeling demonstrated dose-dependent declines in S' according to the end-tidal sevoflurane concentration increments (C(ET)-sevoflurane, p < 0.001): the mean value of S' reduction for each 1.0 vol%-increment of C(ET)-sevoflurane was 1.7 cm/s (95 % confidence interval 1.4-2.1 cm/s). Medians of S' at T1, T2, and T3 (9.6, 8.9, and 7.5 cm/s, respectively) also exhibited significant declines (by 6.6, 15.6, and 21.2 % for T1 vs. T2, T2 vs. T3, and T1 vs. T3, p < 0.001, =0.002, and <0.001 in Friedman pairwise comparisons, respectively).
CONCLUSIONS: Administering sevoflurane as a part of a sevoflurane-remifentanil anesthesia regimen appears to dose-dependently reduce S', indicating LV systolic performance, in patients undergoing cardiac surgery. Further studies may be required to evaluate the clinical implications of these findings.
Main Body: Increasing evidence of the cardioprotective effects of both invasive and non-invasive vagal nerve stimulation (VNS) suggests that these may be feasible methods to treat myocardial ischemia/reperfusion injury via anti-inflammatory regulation. The mechanisms through which auricular VNS controls inflammation are yet to be explored. In this review, we discuss the potential of autonomic nervous system modulation, particularly via the parasympathetic branch, in ameliorating MI. Novel insights are provided about the activation of the cholinergic anti-inflammatory pathway on cardiac macrophages. Acetylcholine binding to the α7 nicotinic acetylcholine receptor (α7nAChR) expressed on macrophages polarizes the pro-inflammatory into anti-inflammatory subtypes. Activation of the α7nAChR stimulates the signal transducer and activator of transcription 3 (STAT3) signaling pathway. This inhibits the secretion of pro-inflammatory cytokines, limiting ischemic injury in the myocardium and initiating efficient reparative mechanisms. We highlight recent developments in the controversial auricular vagal neuro-circuitry and how they may relate to activation of the cholinergic anti-inflammatory pathway.
Conclusion: Emerging published data suggest that auricular VNS is an inexpensive healthcare modality, mediating the dynamic balance between pro- and anti-inflammatory responses in cardiac macrophages and ameliorating cardiac ischemia/reperfusion injury.