Displaying publications 61 - 80 of 1188 in total

Abstract:
Sort:
  1. Jahan S, Alias YB, Bakar AFBA, Yusoff IB
    J Environ Sci (China), 2018 Oct;72:140-152.
    PMID: 30244741 DOI: 10.1016/j.jes.2017.12.022
    The toxicity and kinetic uptake potential of zinc oxide (ZnO) and titanium dioxide (TiO2) nanomaterials into the red bean (Vigna angularis) plant were investigated. The results obtained revealed that ZnO, due to its high dissolution and strong binding capacity, readily accumulated in the root tissues and significantly inhibited the physiological activity of the plant. However, TiO2 had a positive effect on plant physiology, resulting in promoted growth. The results of biochemical experiments implied that ZnO, through the generation of oxidative stress, significantly reduced the chlorophyll content, carotenoids and activity of stress-controlling enzymes. On the contrary, no negative biochemical impact was observed in plants treated with TiO2. For the kinetic uptake and transport study, we designed two exposure systems in which ZnO and TiO2 were exposed to red bean seedlings individually or in a mixture approach. The results showed that in single metal oxide treatments, the uptake and transport increased with increasing exposure period from one week to three weeks. However, in the metal oxide co-exposure treatment, due to complexation and competition among the particles, the uptake and transport were remarkably decreased. This suggested that the kinetic transport pattern of the metal oxide mixtures varied compared to those of its individual constituents.
    Matched MeSH terms: Titanium/toxicity*; Zinc Oxide/toxicity*; Toxicity Tests*; Metal Nanoparticles/toxicity*
  2. Ashraf MF, Abd Aziz M, Stanslas J, Ismail I, Abdul Kadir M
    ScientificWorldJournal, 2013;2013:216894.
    PMID: 24223502 DOI: 10.1155/2013/216894
    The present paper focused on antioxidant and cytotoxicity assessment of crude and total saponin fraction of Chlorophytum borivilianum as an important medicinal plant. In this study, three different antioxidant activities (2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH), ferrous ion chelating (FIC), and β -carotene bleaching (BCB) activity) of crude extract and total saponin fraction of C. borivilianum tubers were performed. Crude extract was found to possess higher free radical scavenging activity (ascorbic acid equivalents 2578 ± 111 mg AA/100 g) and bleaching activity (IC50 = 0.7 mg mL(-1)), while total saponin fraction displayed higher ferrous ion chelating (EC50 = 1 mg mL(-1)). Cytotoxicity evaluation of crude extract and total saponin fraction against MCF-7, PC3, and HCT-116 cancer cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) cell viability assay indicated a higher cytotoxicity activity of the crude extract than the total saponin fraction on all cell lines, being most effective and selective on MCF-7 human breast cancer cell line.
    Matched MeSH terms: Antineoplastic Agents/toxicity*; Plant Extracts/toxicity*; Saponins/toxicity*; Free Radical Scavengers/toxicity*; Complex Mixtures/toxicity*
  3. Shuhaimi-Othman M, Yakub N, Ramle NA, Abas A
    Toxicol Ind Health, 2015 Sep;31(9):773-82.
    PMID: 23302712 DOI: 10.1177/0748233712472519
    Two freshwater fish, Rasbora sumatrana (Cyprinidae) and Poecilia reticulata (guppy; Poeciliidae), were exposed to a range of eight heavy metals (copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), aluminium (Al), and manganese (Mn)) at varied concentrations for 96 h in the laboratory. Mortality was assessed and median lethal concentrations (LC50) were calculated. It was observed that the LC50 values increased with a decrease in mean exposure times, for all metals and for both fish types. The 96-h LC50 values for Cu, Cd, Zn, Pb, Ni, Fe, Al, and Mn were 0.006, 0.10, 0.46, 0.63, 0.83, 1.71, 1.53, and 5.71 mg/L for R. sumatrana and 0.038, 0.17, 1.06, 1.99, 15.62, 1.46, 6.76, and 23.91 mg/L for P. reticulata, respectively. The metal toxicity trend for R. sumatrana and P. reticulata from most to least toxic was Cu > Cd > Zn > Pb > Ni > Al > Fe > Mn and Cu > Cd > Zn > Fe > Pb > Al > Ni > Mn, respectively. Results indicated that Cu was the most toxic metal on both fish, and R. sumatrana was more sensitive than P. reticulata to all the eight metals.
    Matched MeSH terms: Cadmium/toxicity; Copper/toxicity; Iron/toxicity; Lead/toxicity; Manganese/toxicity; Nickel/toxicity; Water Pollutants, Chemical/toxicity*; Zinc/toxicity; Metals, Heavy/toxicity
  4. Jaćević V, Nepovimova E, Kuča K
    Chem Biol Interact, 2019 Aug 01;308:312-316.
    PMID: 31153983 DOI: 10.1016/j.cbi.2019.05.035
    K-oximes were developed as modern drug candidates acting as AChE reactivators. In this study, it has been investigated which interspecies and intergender differences changes could be observed in Wistar rats and Swiss mice, both genders, after the treatment with increasing doses of selected acetylcholinesterase reactivators - asoxime, obidoxime, K027, K048, and K075. After the 24 h, a number of died animals was counted and the median lethal dose (LD50) for each oxime was calculated. By using the intramuscular route of administration, asoxime and K027 had the least toxicity in female rats (640.21 mg/kg and 686.08 mg/kg), and in female mice (565.75 mg/kg and 565.74 mg/kg), respectively. Moreover, asoxime and K027 showed 3, 4 or 8 times less acute toxicity in comparison to K048, obidoxime and K075, respectively. Beyond, K075 had the greatest toxicity in male rats (81.53 mg/kg), and in male mice (57.34 mg/kg), respectively. Our results can help to predict likely adverse toxic effects, target organ systems and possible outcome in the event of massive human overexposure, and in establishing risk categories or in dose selection for the initial repeated dose toxicity tests to be conducted for each oxime.
    Matched MeSH terms: Cholinesterase Reactivators/toxicity; Obidoxime Chloride/toxicity; Oximes/toxicity*; Prodrugs/toxicity; Toxicity Tests, Acute/methods*
  5. Sayyed AH, Omar D, Wright DJ
    Pest Manag Sci, 2004 Aug;60(8):827-32.
    PMID: 15307676
    Resistance to the bacteria-derived insecticides spinosad (Conserve), abamectin (Vertimec), Bacillus thuringiensis var kurstaki (Btk) (Dipel), B thuringiensis var aizawai (Bta) (Xentari), B thuringiensis crystal endotoxins Cry1Ac and Cry1Ca, and to the synthetic insecticide fipronil was estimated in a freshly-collected field population (CH1 strain) of Plutella xylostella (L) from the Cameron Highlands, Malaysia. Laboratory bioassays at G1 indicated significant levels of resistance to spinosad, abamectin, Cry1Ac, Btk, Cry1Ca, fipronil and Bta when compared with a laboratory insecticide-susceptible population. Logit regression analysis of F1 reciprocal crosses indicated that resistance to spinosad in the CH1 population was inherited as a co-dominant trait. At the highest dose of spinosad tested, resistance was close to completely recessive, while at the lowest dose it was incompletely dominant. A direct test of monogenic inheritance based on a back-cross of F1 progeny with CH1 suggested that resistance to spinosad was controlled by a single locus.
    Matched MeSH terms: Bacterial Proteins/toxicity; Bacterial Toxins/toxicity; Endotoxins/toxicity; Insecticides/toxicity*; Ivermectin/toxicity; Protein Precursors/toxicity; Pyrazoles/toxicity; Macrolides/toxicity*
  6. Yusof S, Ismail A, Alias MS
    Mar Pollut Bull, 2014 Aug 30;85(2):494-8.
    PMID: 24731878 DOI: 10.1016/j.marpolbul.2014.03.022
    Glyphosate is globally a widely used herbicide, yet there is little information on their toxicity to marine fishes. Java medaka, a small tropical fish native to coastal areas in several Southeast Asian countries, is viewed as a suitable candidate for toxicity test and thus was used for this study. Java medaka adults were cultured in the laboratory and the fertilized eggs of the F2 generation were exposed to different concentrations of glyphosate-based herbicide (100, 200, 300, 400 and 500 ppm) until they hatched. The survival and hatching rates of the embryos, changes in the heart rate and morphological impairments were recorded. Generally, survival and hatching percentage decreased as glyphosate concentration increased. Absence of pectoral fin(s) and cornea, permanently bent tail, irregular shaped abdomen, and cell disruption in the fin, head and abdomen are among the common teratogenic effects observed. Furthermore, risk factor also increased with the increased in glyphosate concentrations.
    Matched MeSH terms: Glycine/toxicity; Water Pollutants, Chemical/toxicity*; Toxicity Tests/methods
  7. Marimuthu K, Muthu N, Xavier R, Arockiaraj J, Rahman MA, Subramaniam S
    PLoS One, 2013;8(10):e75545.
    PMID: 24098390 DOI: 10.1371/journal.pone.0075545
    Buprofezin is an insect growth regulator and widely used insecticide in Malaysia. The present study evaluated the toxic effects of buprofezin on the embryo and larvae of African catfish (Clarias gariepinus) as a model organism. The embryos and larvae were exposed to 7 different concentrations (0, 0.05, 0.5, 5, 25, 50 and 100 mg/L) of buprofezin. Each concentration was assessed in five replicates. Eggs were artificially fertilized and 200 eggs and larvae were subjected to a static bath treatment for all the concentrations. The mortality of embryos was significantly increased with increasing buprofezin concentrations from 5 to 100 mg/L (p< 0.05). However, the mortality was not significantly different (p<0.05) among the following concentrations: 0 (control), 0.05, 0.5 and 5 mg/L. Data obtained from the buprofezin acute toxicity tests were evaluated using probit analysis. The 24 h LC50 value (with 95% confidence limits) of buprofezin for embryos was estimated to be 6.725 (3.167-15.017) mg/L. The hatching of fish embryos was recorded as 68.8, 68.9, 66.9, 66.4, 26.9, 25.1 and 0.12% in response to 7 different concentrations of buprofezin, respectively. The mortality rate of larvae significantly (p<0.05) increased with increasing buprofezin concentrations exposed to 24-48 h. The 24 and 48 h LC50 values (with 95% confidence limits) of buprofezin for the larvae was estimated to be 5.702 (3.198-8.898) and 4.642 (3.264-6.287) mg/L respectively. There were no significant differences (p>0.05) in the LC50 values obtained at 24 and 48 h exposure times. Malformations were observed when the embryos and larvae exposed to more than 5 mg/L. The results emerged from the study suggest that even the low concentration (5 mg/L) of buprofezin in the aquatic environment may have adverse effect on the early embryonic and larval development of African catfish.
    Matched MeSH terms: Pesticides/toxicity*; Thiadiazines/toxicity*; Toxicity Tests, Acute*
  8. Hayyan M, Hashim MA, Al-Saadi MA, Hayyan A, AlNashef IM, Mirghani ME
    Chemosphere, 2013 Sep;93(2):455-9.
    PMID: 23820537 DOI: 10.1016/j.chemosphere.2013.05.013
    In this work, the cytotoxicity and toxicity of phosphonium-based deep eutectic solvents (DESs) with three hydrogen bond donors, namely glycerine, ethylene glycol, and triethylene glycol were investigated. The cytotoxicity effect was tested using brine shrimp (Artemia salina). The toxicity was investigated using the two Gram positive bacteria Bacillus subtilis and Staphylococcus aureus, and two Gram negative bacteria Escherichia coli and Pseudomonas aeruginosa. The cytotoxicity of tested DESs was much higher than that of their individual components, indicating their toxicological behavior was different. It was also found that there was toxic effect on the studied bacteria, indicating their potential application as anti-bacterial agents. To the best of our knowledge, this is the first time the cytotoxicity and toxicity of phosphonium-based DESs were studied.
    Matched MeSH terms: Cytotoxins/toxicity*; Solvents/toxicity*; Toxicity Tests*
  9. Ismail Hossain M, El-Harbawi M, Noaman YA, Bustam MA, Alitheen NB, Affandi NA, et al.
    Chemosphere, 2011 Jun;84(1):101-4.
    PMID: 21421256 DOI: 10.1016/j.chemosphere.2011.02.048
    Eight hydroxylammonium-based room temperature ionic liquids (ILs) have been synthesized by acid-base neutralization of ethanolamines with organic acids. The ILs were characterized by infrared and nuclear magnetic resonance spectroscopies and elemental analysis. Their anti-microbial activities were determined using the well-diffusion method. All eight ILs were toxic to Staphylococcus aureus, while 2-hydroxyethylammonium lactate and 2-hydroxy-N-(2-hydroxyethyl)-N-methylethanaminium acetate showed high anti-microbial activity against a wide range of human pathogens.
    Matched MeSH terms: Anti-Bacterial Agents/toxicity*; Disinfectants/toxicity; Hydroxylamine/toxicity*; Ionic Liquids/toxicity*
  10. Suja F, Pramanik BK, Zain SM
    Water Sci Technol, 2009;60(6):1533-44.
    PMID: 19759456 DOI: 10.2166/wst.2009.504
    Perfluorinated compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctane acid (PFOA) have been recognized as emerging environmental pollutants because of their ubiquitous occurrence in the environment, biota and humans. The paper focuses on the distribution, bioaccumulation and toxic effects of PFOS and PFOA in the water. From the available literature, tap and surface water samples in several countries were found to be contaminated with PFOS and PFOA. These compounds were detected globally in the tissues of fish, bird and marine mammals. Their concentrations from relatively more industrialized areas were greater than those from the less populated and remote locations. Blood samples of occupationally exposed people and the general population in various countries were found to contain PFOS and PFOA which suggested a possibility of atmospheric transport of these compounds. There is still a death of information about the environmental pathways of PFOS and PFOA. The presence of these compounds in the tap water, surface water and animal and human tissues indicates their global contamination and bioaccumulative phenomena in the ecosystems.
    Matched MeSH terms: Caprylates/toxicity*; Fluorocarbons/toxicity*; Water Pollutants, Chemical/toxicity*; Alkanesulfonic Acids/toxicity*
  11. Suely A, Zabed H, Ahmed AB, Mohamad J, Nasiruddin M, Sahu JN, et al.
    Fish Physiol Biochem, 2016 Apr;42(2):431-44.
    PMID: 26501361 DOI: 10.1007/s10695-015-0149-3
    Increasing demand for eco-friendly botanical piscicides and pesticides as replacements for harmful synthetic chemicals has led to investigation of new sources of plant materials. Stem bark of Terminalia arjuna, which has been used as a popular folk medicine since ancient time, was examined for its piscicidal activity. This study aims to determine toxicity of ethanol extract of T. arjuna bark on fresh water stinging catfish (Heteropneustes fossilis), along with evaluation of changes in hematological parameters of the fishes exposed to a lethal concentration. The percent mortality of fishes varied significantly in response to concentrations of the extract and exposure times (between exposure time F = 36.57, p < 0.001; between concentrations F = 39.93, p < 0.001). The lethal concentrations (LC50) of ethanol extract were found to be 12.7, 8.94, 5.63 and 4.71 mg/l for 24, 48, 72 and 96 h, respectively. During acute toxicity test, blood samples of treatment fishes showed significant decreases in the red blood cells count, hematocrit content, hemoglobin concentration, mean corpuscular hemoglobin concentration and plasma protein level when compared to those of the control group, while there were significant increases in the mean corpuscular volume, mean corpuscular hemoglobin, white blood cells count and plasma glucose concentration. These results suggest that T. arjuna bark extract could be considered as a potent piscicide due to its toxic effect on fish, particularly fish hematology.
    Matched MeSH terms: Pesticides/toxicity*; Plant Extracts/toxicity*; Water Pollutants, Chemical/toxicity*; Toxicity Tests, Acute
  12. Dambatta MS, Murni NS, Izman S, Kurniawan D, Froemming GR, Hermawan H
    Proc Inst Mech Eng H, 2015 May;229(5):335-42.
    PMID: 25991712 DOI: 10.1177/0954411915584962
    This article reports the in vitro degradation and cytotoxicity assessment of Zn-3Mg alloy developed for biodegradable bone implants. The alloy was prepared using casting, and its microstructure was composed of Mg2Zn11 intermetallic phase distributed within a Zn-rich matrix. The degradation assessment was done using potentiodynamic polarization and electrochemical impedance spectrometry. The cell viability and the function of normal human osteoblast cells were assessed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and alkaline phosphatase extracellular enzyme activity assays. The results showed that the degradation rate of the alloy was slower than those of pure Zn and pure Mg due to the formation of a high polarization resistance oxide film. The alloy was cytocompatible with the normal human osteoblast cells at low concentrations (<0.5 mg/mL), and its alkaline phosphatase activity was superior to pure Mg. This assessment suggests that Zn-3Mg alloy has the potential to be developed as a material for biodegradable bone implants, but the toxicity limit must be carefully observed.
    Matched MeSH terms: Alloys/toxicity; Biocompatible Materials/toxicity; Magnesium/toxicity; Zinc/toxicity
  13. Ong ES, Din ZB
    Bull Environ Contam Toxicol, 2001 Jan;66(1):86-93.
    PMID: 11080341
    Matched MeSH terms: Cadmium/toxicity*; Copper/toxicity*; Water Pollutants, Chemical/toxicity*; Zinc/toxicity*
  14. Ismail M, Phang SM, Tong SL, Brown MT
    Environ Monit Assess, 2002 Apr;75(2):145-54.
    PMID: 12002283
    Toxicity testing of four heavy metals (Cd, Cu, Mn and As) using four species of tropical marine phytoplankton, Chaetoceros calcitrans, Isochrysis galbana, Tetraselmis tetrahele and Tetraselmis sp., was carried out in multiwell plates with test volumes of 2 mL and the results compared to those of standard, large volume, shake-flasks. IC50 values (concentrations of metals estimated to inhibit 50% growth relative to the control) were determined after 96 hours based on automated O.D. readings measured in Elisa microplates by a Multiskan spectrophotometer. Good agreement was achieved between O.D. readings and cell counts indicating that this new method is a simple, economical, practical and rapid technique for toxicity testing, and provides good reproducibility of IC50 values. Results of the toxicity tests indicate that Cu was the most toxic metal (average IC50 values ranging from 0.04 to 0.37 mg L(-1)), followed by Cd (0.06-5.7 mg L(-1)), Mn (7.2-21.4 mg L(-1)) and As (33.9-319.3 mg L(-1)). Test species had different degrees of sensitivity to the metals tested, with I. galbana and C. calcitrans the most sensitive to Cu, Cd and Mn. Based on these findings it is recommended that the existing Malaysian Interim Standards for Marine Water Quality for Cd and Cu be reviewed.
    Matched MeSH terms: Water Pollutants/toxicity*; Toxicity Tests/methods*; Metals, Heavy/toxicity*
  15. Tan NH, Saifuddin MN
    PMID: 1982873
    1. The edema-inducing activity of 24 venoms from snakes of the subfamilies of Elapinae, Hydrophiini, Crotalinae and Viperinae was determined. 2. All snake venoms tested are very potent edema inducers. The minimum edema doses of the venoms ranged from 0.16 to 3.41 micrograms per mouse paw. 3. The venoms induced a rapid onset edema which peaked within 1 h of injection and declined thereafter; at low dose, however, some venoms induced a rapid onset edema that sustained over a longer duration.
    Matched MeSH terms: Crotalid Venoms/toxicity; Elapid Venoms/toxicity; Snake Venoms/toxicity*; Viper Venoms/toxicity
  16. Shamsi S, Alagan AA, Sarchio SNE, Md Yasin F
    Int J Nanomedicine, 2020;15:8311-8329.
    PMID: 33149578 DOI: 10.2147/IJN.S271159
    Background: In the current literature, there are ongoing debates on the toxicity of graphene oxide (GO) that demonstrate contradictory findings regarding its toxicity profile. As a potential drug carrier, these findings are very concerning due to the safety concerns in humans, as well as the dramatic rise of GO being excreted into the environment. Therefore, there is an imperative need to mitigate the potential toxicity of GO to allow for a safer application in the future.

    Purpose: The present study aims to address this issue by functionalizing GO with Pluronic F127 (PF) as a means to mitigate toxicity and resolve the biocompatibility of GO. Although results from previous studies generally indicated that Pluronic functionalized GO exhibits relatively low toxicity to living organisms, reports that emphasize on its toxicity, particularly during embryonic developmental stage, are still scarce.

    Methods: In the present study, two different sizes of native GO samples, GO and NanoGO, as well as PF-functionalized GO, GO-PF and NanoGO-PF, were prepared and characterized using DLS, UV-Vis, Raman spectroscopy, FTIR, and FESEM analyses. Toxicological assessment of all GO samples (0-100 µg/mL) on zebrafish embryonic developmental stages (survival, hatching and heart rates, and morphological changes) was recorded daily for up to 96 hours post-fertilization (hpf).

    Results: The toxicity effects of each GO sample were observed to be higher at increasing concentrations and upon prolonged exposure. NanoGO demonstrated lower toxicity effects compared to GO. GO-PF and NanoGO-PF were also found to have lower toxicity effects compared to native GO samples. GO-PF showed the lowest toxicity response on zebrafish embryo.

    Conclusion: These findings highlight that toxicity is dependent on the concentration, size, and exposure period of GO. Functionalization of GO with PF through surface coating could potentially mitigate the toxicity effects of GO in embryonic developmental stages, but further investigation is warranted for broader future applications.

    Matched MeSH terms: Graphite/toxicity*; Toxicity Tests; Poloxamer/toxicity*; Nanostructures/toxicity*
  17. Abdullah R, Alhusainy W, Woutersen J, Rietjens IM, Punt A
    Food Chem Toxicol, 2016 Jun;92:104-16.
    PMID: 27016491 DOI: 10.1016/j.fct.2016.03.017
    Aristolochic acids are naturally occurring nephrotoxins. This study aims to investigate whether physiologically based kinetic (PBK) model-based reverse dosimetry could convert in vitro concentration-response curves of aristolochic acid I (AAI) to in vivo dose response-curves for nephrotoxicity in rat, mouse and human. To achieve this extrapolation, PBK models were developed for AAI in these different species. Subsequently, concentration-response curves obtained from in vitro cytotoxicity models were translated to in vivo dose-response curves using PBK model-based reverse dosimetry. From the predicted in vivo dose-response curves, points of departure (PODs) for risk assessment could be derived. The PBK models elucidated species differences in the kinetics of AAI with the overall catalytic efficiency for metabolic conversion of AAI to aristolochic acid Ia (AAIa) being 2-fold higher for rat and 64-fold higher for mouse than human. Results show that the predicted PODs generally fall within the range of PODs derived from the available in vivo studies. This study provides proof of principle for a new method to predict a POD for in vivo nephrotoxicity by integrating in vitro toxicity testing with in silico PBK model-based reverse dosimetry.
    Matched MeSH terms: Carcinogens/toxicity*; Toxicity Tests/methods*; Aristolochic Acids/toxicity*
  18. Saidur MR, Aziz AR, Basirun WJ
    Biosens Bioelectron, 2017 Apr 15;90:125-139.
    PMID: 27886599 DOI: 10.1016/j.bios.2016.11.039
    The presence of heavy metal in food chains due to the rapid industrialization poses a serious threat on the environment. Therefore, detection and monitoring of heavy metals contamination are gaining more attention nowadays. However, the current analytical methods (based on spectroscopy) for the detection of heavy metal contamination are often very expensive, tedious and can only be handled by trained personnel. DNA biosensors, which are based on electrochemical transduction, is a sensitive but inexpensive method of detection. The principles, sensitivity, selectivity and challenges of electrochemical biosensors are discussed in this review. This review also highlights the major advances of DNA-based electrochemical biosensors for the detection of heavy metal ions such as Hg(2+), Ag(+), Cu(2+) and Pb(2+).
    Matched MeSH terms: Gold/toxicity; Ions/toxicity; Mercury/toxicity; Metals, Heavy/toxicity
  19. Ting YF, Praveena SM, Aris AZ, Ismail SNS, Rasdi I
    Ecotoxicology, 2017 Dec;26(10):1327-1335.
    PMID: 28975452 DOI: 10.1007/s10646-017-1857-5
    Steroid estrogens such as 17β-Estradiol (E2) and 17α-Ethynylestradiol (EE2) are highly potent estrogens that widely detected in environmental samples. Mathematical modelling such as concentration addition (CA) and estradiol equivalent concentration (EEQ) models are usually associated with measuring techniques to assess risk, predict the mixture response and evaluate the estrogenic activity of mixture. Wastewater has played a crucial role because wastewater treatment plant (WWTP) is the major sources of estrogenic activity in aquatic environment. The aims of this is to determine E2 and EE2 concentrations in six WWTPs effluent, to predict the estrogenic activity of the WWTPs effluent using CA and EEQ models where lastly the effectiveness of two models is evaluated. Results showed that all the six WWTPs effluent had relative high E2 concentration (35.1-85.2 ng/L) compared to EE2 (0.02-1.0 ng/L). The estrogenic activity predicted by CA model was similar among the six WWTPs (105.4 ng/L), due to the similarity of individual dose potency ratio calculated by respective WWTPs. The predicted total EEQ was ranged from 35.1 EEQ-ng/L to 85.3 EEQ-ng/L, explained by high E2 concentration in WWTPs effluent and E2 EEF value that standardized to 1.0 μg/L. The CA model is more effective than EEQ model in estrogenic activity prediction because EEQ model used less data and causes disassociation from the predicted behavior. Although both models predicted relative high estrogenic activity in WWTPs effluent, dilution effects in receiving river may lower the estrogenic response to aquatic inhabitants.
    Matched MeSH terms: Estradiol/toxicity*; Estrogens/toxicity*; Ethinyl Estradiol/toxicity*; Water Pollutants, Chemical/toxicity*
  20. Assayaghi RM, Alabsi AM, Swethadri G, Ali AM
    Asian Pac J Cancer Prev, 2019 Oct 01;20(10):3071-3075.
    PMID: 31653156 DOI: 10.31557/APJCP.2019.20.10.3071
    BACKGROUND: Treatment of cancer with chemo-radiotherapy causes severe side effects due to cytotoxic effects towards normal tissues which often results in morbidity. Therefore, developing anticancer agents which can selectively target the cancer cells and cause less side effects are the main objectives of the new therapeutic strategies for treatment advanced or metastatic cancers. Newcastle disease virus strains AF2240 and V4-UPM were shown to be cytolytic against various cancer cells in-vitro and very effective as antileukemicagents.

    METHODS: 45 rats at 6 weeks of age, were randomly assigned to nine groups with 5 rats in each group, both azoxymethane (AOM) and 5-Fluorouracil (5-FU) were given to rats according to the body weight. NDV virus strains (AF2240 and V4-UPM) doses were determined to rats according to CD50 resulted from MTT assay. After 8 doses of NDV strians and 5-FU, tissue sections preparations and histopathological study of rats' organs were done.

    RESULTS: In this article morphological changes of rats' organs, especially in livers, after treatment with a colon carcinogen (azoxymethane) and Newcastle disease virus strains have been recorded. We observed liver damage caused by AOM evidenced by morphological changes and enzymatic elevation were protected by the oncolytic viruses sections. Also we found that combination treatment NDV with 5-FU had greater antitumor efficacy than treatment with NDV or 5-FU alone.

    CONCLUSION: We noted morphological changes in liver and other rats' organs due to a chemical carcinogen and their protection by NDV AF2240 and NDV V4-UPM seems to be most protective.

    Matched MeSH terms: Antimetabolites, Antineoplastic/toxicity; Azoxymethane/toxicity; Carcinogens/toxicity; Fluorouracil/toxicity
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links