Displaying publications 61 - 80 of 85 in total

Abstract:
Sort:
  1. Ramdas P, Radhakrishnan AK, Abdu Sani AA, Abdul-Rahman PS
    Nutr Cancer, 2019;71(8):1263-1271.
    PMID: 31084432 DOI: 10.1080/01635581.2019.1607407
    Tocotrienols (T3), a family of vitamin E, are reported to possess potent anti-cancer effects but the molecular mechanisms behind these effects still remain unclear. The aim of this study was to investigate how T3 exert anti-cancer effects on MDA-MB-231 human breast cancer cells. The MDA-MB-231 cells were chosen for this study as they are triple-negative and highly metastatic cells, which form aggressive tumors in experimental models. The MDA-MB-231 cells were treated with varying concentrations (0-20 µg mL-1) of gamma (γ) or delta (δ) T3 and the secretome profiles of these cells treated with half maximal inhibitory concentration (IC50) of γT3 (5.8 µg mL-1) or δT3 (4.0 µg mL-1) were determined using label-free quantitative proteomic strategy. A total of 103, 174 and 141 proteins were identified with ProteinLynx Global Server (PLGS) score of more than 200 and above 25% sequence coverage in the untreated control and T3-treated cell culture supernatant respectively. A total of 18 proteins were dysregulated between untreated control and T3 (δT3 or γT3) treated conditions. The results showed that T3 treatment downregulated the exogenous Cathepsin D and Serpine1 proteins but upregulated Profilin-1 protein, which play a key role in breast cancer in the MDA-MB-231 cells. These findings strongly suggest that T3 may induce differential expression of secreted proteins involved in the cytoskeletal regulation of RHO GTPase signaling pathway.
    Matched MeSH terms: Tocotrienols/pharmacology*
  2. Yusof KM, Makpol S, Fen LS, Jamal R, Wan Ngah WZ
    J Nat Med, 2019 Sep;73(4):745-760.
    PMID: 31177355 DOI: 10.1007/s11418-019-01323-6
    Our previous study reported that combined treatment of γ-tocotrienol with 6-gingerol showed promising anticancer effects by synergistically inhibiting proliferation of human colorectal cancer cell lines. This study aimed to identify and elucidate molecular mechanisms involved in the suppression of SW837 colorectal cancer cells modulated by combined treatment of γ-tocotrienol and 6-gingerol. Total RNA from both untreated and treated cells was prepared for transcriptome analysis using RNA sequencing techniques. We performed high-throughput sequencing at approximately 30-60 million coverage on both untreated and 6G + γT3-treated cells. The results showed that cancer-specific differential gene expression occurred and functional enrichment pathway analysis suggested that more than one pathway was modulated in 6G + γT3-treated cells. Combined treatment with 6G + γT3 augmented its chemotherapeutic effect by interfering with the cell cycle process, downregulating the Wnt signalling pathway and inducing apoptosis mainly through caspase-independent programmed cell death through mitochondrial dysfunction, activation of ER-UPR, disruption of DNA repair mechanisms and inactivation of the cell cycle process through the downregulation of main genes in proliferation such as FOXM1 and its downstream genes. The combined treatment exerted its cytotoxic effect through upregulation of genes in stress response activation and cytostatic effects demonstrated by downregulation of main regulator genes in the cell cycle. Selected genes involved in particular pathways including ATF6, DDIT3, GADD34, FOXM1, CDK1 and p21 displayed concordant patterns of gene expression between RNA sequencing and RT-qPCR. This study provides new insights into combined treatment with bioactive compounds not only in terms of its pleiotropic effects that enhance multiple pathways but also specific target genes that could be exploited for therapeutic purposes, especially in suppressing cancer cell growth.
    Matched MeSH terms: Tocotrienols/pharmacology*
  3. Cheng HS, Ton SH, Tan JBL, Abdul Kadir K
    Nutrients, 2017 Sep 07;9(9).
    PMID: 28880217 DOI: 10.3390/nu9090984
    The clinical value of tocotrienols is increasingly appreciated because of the unique therapeutic effects that are not shared by tocopherols. However, their effect on metabolic syndrome is not well-established. This study aimed to investigate the effects of a tocotrienol-rich fraction (TRF) from palm oil in high-fat-diet-treated rats. Male, post-weaning Sprague Dawley rats were provided high-fat (60% kcal) diet for eight weeks followed by a TRF (60 mg/kg) treatment for another four weeks. Physical, metabolic, and histological changes were compared to those on control and high-fat diets respectively. High-fat feeding for eight weeks induced all hallmarks of metabolic syndrome. The TRF reversed systolic and diastolic hypertension, hypercholesterolemia, hepatic steatosis, impaired antioxidant defense, and myeloperoxidase hyperactivity triggered by the high-fat diet. It also conferred an inhibitory effect on protein glycation to reduce glycated hemoglobin A1c and advanced glycation end products (AGE). This was accompanied by the suppression of the receptor for advanced glycation end product (RAGE) expression in the liver. The treatment effects on visceral adiposity, glycemic control, triglyceride level, as well as peroxisome proliferator-activated receptor α and γ expression were negligible. To conclude, treatment with a TRF exhibited protective effects on the cardiovascular and liver health in addition to the amelioration of plasma redox imbalance and AGE-RAGE activation. Further investigation as a therapy for metabolic syndrome is therefore worthwhile.
    Matched MeSH terms: Tocotrienols/pharmacology*
  4. Norazlina M, Lee PL, Lukman HI, Nazrun AS, Ima-Nirwana S
    Singapore Med J, 2007 Mar;48(3):195-9.
    PMID: 17342286
    Nicotine has been shown to exert negative effects on bone. This study determined whether vitamin E supplementation is able to repair the nicotine-induced adverse effects in bone.
    Matched MeSH terms: Tocotrienols/pharmacology
  5. Wong SK, Chin KY, Ima-Nirwana S
    PMID: 31505801 DOI: 10.3390/ijerph16183313
    A positive association between metabolic syndrome (MetS) and osteoporosis has been demonstrated in previous animal studies. The mechanisms of MetS in orchestrating the bone remodelling process have traditionally focused on the interactions between mature osteoblasts and osteoclasts, while the role of osteocytes is unexplored. Our earlier studies demonstrated the bone-promoting effects of tocotrienol using a rat model of osteoporosis induced by MetS. This study aimed to investigate the expression of osteocyte-derived peptides in the bone of rats with MetS-induced osteoporosis treated with tocotrienol. Age-matched male Wistar rats (12-week-old; n = 42) were divided into seven experimental groups. Two groups served as the baseline and normal group, respectively. The other five groups were fed with a high-carbohydrate high-fat (HCHF) diet to induce MetS. The five groups of HCHF animals were treated with tocopherol-stripped corn oil (vehicle), annatto tocotrienol (60 and 100 mg/kg), and palm tocotrienol (60 and 100 mg/kg) starting from week 8. At the end of the study, the rats were sacrificed and their right tibias were harvested. Protein was extracted from the metaphyseal region of the proximal right tibia and levels of bone peptides, including osteoprotegerin (OPG), soluble receptor activator of nuclear factor-kappa B ligand (sRANKL), sclerostin (SOST), Dickkopf-related protein 1 (DKK-1), fibroblast growth factor-23 (FGF-23), and parathyroid hormone (PTH), were measured. The vehicle-treated animals displayed higher levels of sRANKL, SOST, DKK-1, FGF-23, and PTH as compared to the normal animals. Oral supplementation of annatto and palm tocotrienol (60 and 100 mg/kg) reduced the levels of sRANKL and FGF-23 in the HCHF animals. Only 100 mg/kg annatto and palm tocotrienol lowered SOST and DKK-1 levels in the HCHF animals. In conclusion, tocotrienol exerts potential skeletal-promoting benefit by modulating the levels of osteocytes-derived bone-related peptides.
    Matched MeSH terms: Tocotrienols/pharmacology*
  6. Ghani SMA, Goon JA, Azman NHEN, Zakaria SNA, Hamid Z, Ngah WZW
    Clinics (Sao Paulo), 2019 03 07;74:e688.
    PMID: 30864639 DOI: 10.6061/clinics/2019/e688
    OBJECTIVES: This study aims to compare the differential gene expression resulting from tocotrienol-rich fraction and α-tocopherol supplementation in healthy older adults.

    METHODS: A total of 71 eligible subjects aged 50 to 55 years from Gombak and Kuala Lumpur, Malaysia, were divided into three groups and supplemented with placebo (n=23), α-tocopherol (n=24) or tocotrienol-rich fraction (n=24). Blood samples were collected at baseline and at 3 and 6 months of supplementation for microarray analysis.

    RESULTS: The number of genes altered by α-tocopherol was higher after 6 months (1,410) than after 3 months (273) of supplementation. α-Tocopherol altered the expression of more genes in males (952) than in females (731). Similarly, tocotrienol-rich fraction modulated the expression of more genes after 6 months (1,084) than after 3 months (596) and affected more genes in males (899) than in females (781). α-Tocopherol supplementation modulated pathways involving the response to stress and stimuli, the immune response, the response to hypoxia and bacteria, the metabolism of toxins and xenobiotics, mitosis, and synaptic transmission as well as activated the mitogen-activated protein kinase and complement pathways after 6 months. However, tocotrienol-rich fraction supplementation affected pathways such as the signal transduction, apoptosis, nuclear factor kappa B kinase, cascade extracellular signal-regulated kinase-1 and extracellular signal-regulated kinase-2, immune response, response to drug, cell adhesion, multicellular organismal development and G protein signaling pathways.

    CONCLUSION: Supplementation with either α-tocopherol or tocotrienol-rich fraction affected the immune and drug response and the cell adhesion and signal transduction pathways but modulated other pathways differently after 6 months of supplementation, with sex-specific responses.

    Matched MeSH terms: Tocotrienols/pharmacology*
  7. Aliahmat NS, Noor MR, Yusof WJ, Makpol S, Ngah WZ, Yusof YA
    Clinics (Sao Paulo), 2012 Dec;67(12):1447-54.
    PMID: 23295600
    OBJECTIVE: The aim of this study was to determine the erythrocyte antioxidant enzyme activity and the superoxide dismutase, catalase, glutathione peroxidase, and plasma malondialdehyde levels in aging mice and to evaluate how these measures are modulated by potential antioxidants, including the tocotrienol-rich fraction, Piper betle, and Chlorella vulgaris.

    METHOD: One hundred and twenty male C57BL/6 inbred mice were divided into three age groups: young (6 months old), middle-aged (12 months old), and old (18 months old). Each age group consisted of two control groups (distilled water and olive oil) and three treatment groups: Piper betle (50 mg/kg body weight), tocotrienol-rich fraction (30 mg/kg), and Chlorella vulgaris (50 mg/kg). The duration of treatment for all three age groups was two months. Blood was withdrawn from the orbital sinus to determine the antioxidant enzyme activity and the malondialdehyde level.

    RESULTS: Piper betle increased the activities of catalase, glutathione peroxidase, and superoxide dismutase in the young, middle, and old age groups, respectively, when compared to control. The tocotrienol-rich fraction decreased the superoxide dismutase activity in the middle and the old age groups but had no effect on catalase or glutathione peroxidase activity for all age groups. Chlorella vulgaris had no effect on superoxide dismutase activity for all age groups but increased glutathione peroxidase and decreased catalase activity in the middle and the young age groups, respectively. Chlorella vulgaris reduced lipid peroxidation (malondialdehyde levels) in all age groups, but no significant changes were observed with the tocotrienol-rich fraction and the Piper betle treatments.

    CONCLUSION: We found equivocal age-related changes in erythrocyte antioxidant enzyme activity when mice were treated with Piper betle, the tocotrienol-rich fraction, and Chlorella vulgaris. However, Piper betle treatment showed increased antioxidant enzymes activity during aging.

    Matched MeSH terms: Tocotrienols/pharmacology*
  8. Wan Hasan WN, Chin KY, Abd Ghafar N, Soelaiman IN
    Drug Des Devel Ther, 2020;14:969-976.
    PMID: 32184566 DOI: 10.2147/DDDT.S224941
    PURPOSE: Annatto-derived tocotrienol (AnTT) has been shown to improve bone formation in animal models of osteoporosis and promote differentiation of pre-osteoblastic cells. However, the mechanism of action of AnTT in achieving these effects is unclear. This study aims to investigate the mechanism of action of AnTT on MC3T3-E1 pre-osteoblasts via the mevalonate pathway.

    METHODS: Murine pre-osteoblastic cells, MC3T3-E1, were cultured with the density of 1 × 104 cells/mL and treated with 4 concentrations of AnTT (0.001-1 µg/mL). Expression of HMG-CoA reductase (HMGR) gene was carried out using qPCR after treatment with AnTT for 21 days. RhoA activation and bone morphogenetic protein-2 (BMP-2) were measured using immunoassay after 9 and 15 days of AnTT treatment. Lovastatin was used as the positive control. Mineralized nodules were detected using Von Kossa staining after 21 days of AnTT treatment.

    RESULTS: The results showed that HMGR was up-regulated in the lovastatin group on day 9 and 21 compared to the control. Lovastatin also inhibited RhoA activation (day 9 and 15) and increased BMP-2 protein (day 15). On the other hand, AnTT at 0.001 μg/mL (day 3) and 0.1 μg/mL (day 21) significantly down-regulated HMGR gene expression compared to the control. On day 21, HMGR gene expression was significantly reduced in all groups compared to day 15. AnTT at 0.1 μg/mL significantly decreased RhoA activation on day 9 compared to the control. AnTT at 1 μg/mL significantly increased BMP-2 protein on day 15 compared to the control (P<0.05). Mineralized calcium nodules were more abundant in AnTT treated groups compared to the control on day 21.

    CONCLUSION: AnTT suppresses the mevalonate pathway by downregulating HMGR gene expression and inhibiting RhoA activation, leading to increased BMP-2 protein in MC3T3-E1 cells. This explains the stimulating effects of AnTT on osteoblast mineralization.

    Matched MeSH terms: Tocotrienols/pharmacology*
  9. Har CH, Keong CK
    Asia Pac J Clin Nutr, 2005;14(4):374-80.
    PMID: 16326644
    The effects of tocotrienols on murine liver cell viability and their apoptotic events were studied over a dose range of 0-32 microg mL(-1). Normal murine liver cells (BNL CL.2) and murine liver cancer cells (BNL 1ME A.7R.1) were treated with tocotrienols (T(3)), alpha tocopherol (alpha-T) and the chemo drug, Doxorubicin (Doxo, as a positive control). Cell viability assay showed that T(3) significantly (P < or = 0.05) lowered the percentage of BNL 1ME A.7R.1 cell viability in a dose-responsive manner (8-16 microg mL(-1)), whereas T did not show any significant (P>0.05) inhibition in cell viability with increasing treatment doses of 0-16 microg mL(-1). The IC(50) for tocotrienols were 9.8, 8.9, 8.1, 9.7, 8.1 and 9.3 microg mL(-1) at 12, 24, 36, 48, 60 and 72 hours respectively. Early apoptosis was detected 6 hours following T(3) treatment of BNL 1ME A.7R.1 liver cancer cells, using Annexin V-FITC fluorescence microscopy assay for apoptosis, but none were observed for the non-treated liver cancer cells at the average IC(50) of 8.98 microg mL(-1) tocotrienols for liver cancer cells. Several apoptotic bodies were detected in BNL 1ME A.7R.1 liver cancer cells at 6 hours post-treatment with tocotrienols (8.98 microg mL(-1)) using Acridine Orange/Propidium Iodide fluorescence assay. However, only a couple of apoptotic bodies were seen in the non-treated liver cancer cells and the BNL CL.2 normal liver cells. Some mitotic bodies were also observed in the T(3)-treated BNL 1ME A.7R.1 liver cancer cells but were not seen in the untreated BNL 1ME A.7R.1 cells and the BNL CL.2 liver cells. Following T(3)-treatment (8.98 microg mL(-1)) of the BNL 1ME A.7R.1 liver cancer cells, 24.62%, 25.53% and 44.90% of the cells showed elevated active caspase 3 activity at 9, 12 and 24 hours treatment period, respectively. DNA laddering studies indicated DNA fragmentation occurred in the T(3)-treated liver cancer cells, BNL 1ME A.7R.1 but not in non-treated liver cancer cells and the T(3)-treated and non-treated normal liver cells. These results suggest that tocotrienols were able to reduce the cell viability in the murine liver cancer cells at a dose of 8-32 microg mL(-1) and that this decrease in percentage cell viability may be due to apoptosis.
    Matched MeSH terms: Tocotrienols/pharmacology*
  10. Azlina MF, Nafeeza MI, Khalid BA
    Asia Pac J Clin Nutr, 2005;14(4):358-65.
    PMID: 16326642
    Rats exposed to stress developed various changes in the gastrointestinal tract and hormones. The present study was designed to compare the impact of tocopherol and tocotrienol on changes that influence gastric and hormonal parameters important in maintaining gastric mucosal integrity in rats exposed to restrain stress. These include gastric acidity, gastric tissue content of parameters such as malondialdehyde, prostaglandin (PGE(2)), serum levels of gastrin and glucagon-like peptide-1 (GLP-1). Sixty male Sprague-Dawley rats (200-250 g) were randomly divided into three equal sized groups, a control group which received a normal rat diet (RC) and two treatment groups each receiving a vitamin deficient diet with oral supplementation of either tocopherol (TF) or tocotrienol (TT) at 60 mg/kg body weight. Blood samples were taken from half the number of rats (non-stressed group) after a treatment period of 28 days before they were killed. The remaining half was subjected to experimental restraint-stress, at 2 hours daily for 4 consecutive days (stressed groups), on the fourth day, blood samples were taken and the rats killed. The findings showed that the gastric acid concentration and serum gastrin level in stressed rats were significantly (P<0.05) reduced compared to the non-stressed rats in the control and TF groups. However, the gastric acidity and gastrin levels in the TT group were comparable in stressed and non-stressed rats. These findings suggest that tocotrienol is able to preserve the gastric acidity and serum gastrin level which are usually altered in stressed conditions. The PGE(2) content and the plasma GLP-1 level were, however, comparable in all stressed and non-stressed groups indicating that these parameters were not altered in stress and that supplementation with TF or TT had no effect on the gastric PGE2 content or the GLP-1 level. The malondialdehyde, an indicator of lipid peroxidation was higher from gastric tissues in the stressed groups compared to the non-stressed groups. These findings implicated that free radicals may play a role in the development of gastric injury in stress and supplementation with either TF or TT was able to reduce the lipid peroxidation levels compared to the control rats. We conclude that both tocopherol and tocotrienol are comparable in their gastro-protective ability against damage by free radicals generated in stress conditions, but only tocotrienol has the ability to block the stress-induced changes in the gastric acidity and gastrin level.
    Matched MeSH terms: Tocotrienols/pharmacology*
  11. Kamisah Y, Lim JJ, Lim CL, Asmadi AY
    PLoS One, 2014;9(2):e89248.
    PMID: 24586630 DOI: 10.1371/journal.pone.0089248
    Phenylhydrazine, a hemolytic agent, is widely used as a model of experimental hyperbilirubinemia. Palm tocotrienol-rich fraction (TRF) was shown to exert beneficial effects in hyperbilirubinemic rat neonates.
    Matched MeSH terms: Tocotrienols/pharmacology*
  12. Ibrahim N', Mohamed N, Soelaiman IN, Shuid AN
    Int J Environ Res Public Health, 2015 Oct;12(10):12958-76.
    PMID: 26501302 DOI: 10.3390/ijerph121012958
    Osteoporotic drugs are used to prevent fragility fractures, but their role in fracture healing still remains unknown. Thus, alternative agents with suitable mode of delivery are needed to promote fracture healing. This study was performed to investigate the effects of direct deliveries of lovastatin and tocotrienol to fracture sites on ossification-related gene expression in fracture healing in a postmenopausal osteoporosis model. Forty-eight Sprague Dawley female rats were divided into six groups. Group I comprised the sham-operated rats, while Groups II-VI were ovariectomized rats. After 8 weeks, the right tibiae of all rats were fractured and stabilized. Group I and Group II were given two single injections of lovastatin and tocotrienol carriers. Group III was given an estrogen preparation at 64.5 µg/kg daily via oral gavages. Group IV was injected with lovastatin particles (750 µg/kg), while Group V was injected with tocotrienol particles (60 mg/kg). Group VI received two single injections of 750 µg/kg lovastatin particles and 60 mg/kg tocotrienol particles. After 4 weeks, the gene expressions were measured. Group VI showed significantly higher gene expressions of osteocalcin, BMP-2, VEGF-α, and RUNX-2 compared to Group II. In conclusion, combined treatment of lovastatin and tocotrienol upregulated the expression of genes related to fracture healing.
    Matched MeSH terms: Tocotrienols/pharmacology*
  13. Khor SC, Razak AM, Wan Ngah WZ, Mohd Yusof YA, Abdul Karim N, Makpol S
    PLoS One, 2016;11(2):e0149265.
    PMID: 26885980 DOI: 10.1371/journal.pone.0149265
    Aging results in a loss of muscle mass and strength. Myoblasts play an important role in maintaining muscle mass through regenerative processes, which are impaired during aging. Vitamin E potentially ameliorates age-related phenotypes. Hence, this study aimed to determine the effects of the tocotrienol-rich fraction (TRF) and α-tocopherol (ATF) in protecting myoblasts from replicative senescence and promoting myogenic differentiation. Primary human myoblasts were cultured into young and senescent stages and were then treated with TRF or ATF for 24 h, followed by an analysis of cell proliferation, senescence biomarkers, cellular morphology and differentiation. Our data showed that replicative senescence impaired the normal regenerative processes of myoblasts, resulting in changes in cellular morphology, cell proliferation, senescence-associated β-galactosidase (SA-β-gal) expression, myogenic differentiation and myogenic regulatory factors (MRFs) expression. Treatment with both TRF and ATF was beneficial to senescent myoblasts in reclaiming the morphology of young cells, improved cell viability and decreased SA-β-gal expression. However, only TRF treatment increased BrdU incorporation in senescent myoblasts, as well as promoted myogenic differentiation through the modulation of MRFs at the mRNA and protein levels. MYOD1 and MYOG gene expression and myogenin protein expression were modulated in the early phases of myogenic differentiation. In conclusion, the tocotrienol-rich fraction is superior to α-tocopherol in ameliorating replicative senescence-related aberration and promoting differentiation via modulation of MRFs expression, indicating vitamin E potential in modulating replicative senescence of myoblasts.
    Matched MeSH terms: Tocotrienols/pharmacology*
  14. Abdul Rahman Sazli F, Jubri Z, Abdul Rahman M, Karsani SA, Md Top AG, Wan Ngah WZ
    PMID: 25886747 DOI: 10.1186/s12906-015-0590-y
    To determine the antiproliferative effect of gamma-tocotrienol (GTT) treatment on differential protein expression in HepG2 cells.
    Matched MeSH terms: Tocotrienols/pharmacology*
  15. Nur Azlina MF, Qodriyah HMS, Chua KH, Kamisah Y
    World J Gastroenterol, 2017 Aug 28;23(32):5887-5894.
    PMID: 28932080 DOI: 10.3748/wjg.v23.i32.5887
    AIM: To investigate and compare the effects of tocotrienol and omeprazole on gastric growth factors in rats exposed to water-immersion restraint stress (WIRS).

    METHODS: Twenty-eight male Wistar rats were randomly assigned to four groups of seven rats. The two control groups were administered vitamin-free palm oil (vehicle) and the two treatment groups were given omeprazole (20 mg/kg) or tocotrienol (60 mg/kg) by oral gavage. After 28 d of treatment, rats from one control group and both treated groups were subjected to WIRS one time for 3.5 h. Gastric lesions were measured and gastric tissues were obtained to measure vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and transforming growth factor-alpha (TGF-α) mRNA expression.

    RESULTS: Rats exposed to WIRS for 3.5 h demonstrated the presence of considerable ulcers in the form of gastric erosion. The lesion index in the stressed control (S) group was increased (P < 0.001) compared to the tocotrienol treated and omeprazole treated groups. Stress led to a decrease in gastric VEGF (P < 0.001), bFGF (P < 0.001) and TGF-α (P < 0.001) mRNA levels and caused an increase in EGF mRNA (P < 0.001) that was statistically significant compared to the non-stressed control group. Although both treatment agents exerted similar ulcer reducing ability, only treatment with tocotrienol led to increased expression of VEGF (P = 0.008), bFGF (P = 0.001) and TGF-α (P = 0.002) mRNA.

    CONCLUSION: Tocotrienol provides gastroprotective effects in WIRS-induced ulcers. Compared to omeprazole, tocotrienol exerts a similar protective effect, albeit through multiple mechanisms of protection, particularly through up-regulation of growth factors that assist in repair of gastric tissue injuries.

    Matched MeSH terms: Tocotrienols/pharmacology*
  16. Che HL, Kanthimathi MS, Loganathan R, Yuen KH, Tan AT, Selvaduray KR, et al.
    Eur J Clin Nutr, 2017 01;71(1):107-114.
    PMID: 27759074 DOI: 10.1038/ejcn.2016.200
    BACKGROUND/OBJECTIVES: Evidence shows that tocotrienols potentially reverse various chronic disease progressions caused by the metabolic syndrome. We aimed to investigate the acute effects of a single-dose supplementation of gamma and delta tocotrienols (γδ-T3, 1:4 ratio) compared with those in placebo on the insulinemic, anti-inflammatory and anti-thrombogenic responses in metabolic syndrome subjects.

    SUBJECTS/METHODS: Thirty metabolic syndrome subjects (15 men and 15 women) were recruited to a randomized, double-blinded and crossover study. The subjects were administered a single dose of 200 mg or 400 mg γδ-T3 emulsions or placebo incorporated into a glass of strawberry-flavored milkshake, consumed together with a high-fat muffin. Blood samples were collected at 0, 5, 15, 30, 60, 90, 120, 180, 240, 300 and 360 min after meal intake.

    RESULTS: Plasma vitamin E levels reflected the absorption of γδ-T3 after treatments. Postprandial changes in serum C-peptide, serum insulin, plasma glucose, triacylglycerol, non-esterified fatty acid and adiponectin did not differ between treatments, with women displaying delayed increase in the aforementioned markers. No significant difference between treatments was observed for plasma cytokines (interleukin-1 beta, interleukin-6 and tumor necrosis factor alpha) and thrombogenic markers (plasminogen activator inhibitor type 1 and D-dimer).

    CONCLUSIONS: Supplementation of a single dose of γδ-T3 did not change the insulinemic, anti-inflammatory and anti-thrombogenic responses in metabolic syndrome subjects.

    Matched MeSH terms: Tocotrienols/pharmacology*
  17. Chin KY, Gengatharan D, Mohd Nasru FS, Khairussam RA, Ern SL, Aminuddin SA, et al.
    Nutrients, 2016 Dec 14;8(12).
    PMID: 27983628
    Osteoporosis reduces the skeletal strength and increases the risk for fracture. It is an underdiagnosed disease in men. Annatto tocotrienol has been shown to improve bone structural indices and increase expression of bone formation genes in orchidectomized rats. This study aimed to evaluate the effects of annatto tocotrienol on biomechanical strength and calcium content of the bone in orchidectomized rats. Thirty three-month-old male Sprague-Dawley rats were randomly assigned to five groups. The baseline control (BC) group was sacrificed at the onset of the study. The sham-operated group (SHAM) received olive oil (the vehicle of tocotrienol) orally daily and peanut oil (the vehicle of testosterone) intramuscularly weekly. The remaining rats were orchidectomized and treated with three different regimens, i.e., (1) daily oral olive oil plus weekly intramuscular peanut oil injection; (2) daily oral annatto tocotrienol at 60 mg/kg plus weekly intramuscular peanut oil injection; (3) daily oral olive oil plus weekly intramuscular testosterone enanthate injection at 7 mg/kg. Blood, femur and tibia of the rats were harvested at the end of the two-month treatment period for the evaluation of serum total calcium and inorganic phosphate levels, bone biomechanical strength test and bone calcium content. Annatto-tocotrienol treatment improved serum calcium level and tibial calcium content (p < 0.05) but it did not affect femoral biomechanical strength (p > 0.05). In conclusion, annatto-tocotrienol at 60 mg/kg augments bone calcium level by preventing calcium mobilization into the circulation. A longer treatment period is needed for annatto tocotrienol to exert its effects on bone strength.
    Matched MeSH terms: Tocotrienols/pharmacology*
  18. Mohamad NV, Ima-Nirwana S, Chin KY
    Drug Des Devel Ther, 2018;12:555-564.
    PMID: 29588572 DOI: 10.2147/DDDT.S158410
    Background: Patients receiving androgen deprivation therapy experience secondary hypogonadism, associated bone loss, and increased fracture risk. It has been shown that tocotrienol from Bixa orellana (annatto) prevents skeletal microstructural changes in rats experiencing primary hypogonadism. However, its potential in preventing bone loss due to androgen deprivation therapy has not been tested. This study aimed to evaluate the skeletal protective effects of annatto tocotrienol using a buserelin-induced osteoporotic rat model.

    Methods: Forty-six male Sprague Dawley rats aged 3 months were randomized into six groups. The baseline control (n=6) was sacrificed at the onset of the study. The normal control (n=8) received corn oil (the vehicle of tocotrienol) orally daily and normal saline (the vehicle of buserelin) subcutaneously daily. The buserelin control (n=8) received corn oil orally daily and subcutaneous buserelin injection (75 µg/kg) daily. The calcium control (n=8) was supplemented with 1% calcium in drinking water and daily subcutaneous buserelin injection (75 µg/kg). The remaining rats were given daily oral annatto tocotrienol at 60 mg/kg (n=8) or 100 mg/kg (n=8) plus daily subcutaneous buserelin injection (75 µg/kg) (n=8). At the end of the experiment, the rats were euthanized and their blood, tibia, and femur were harvested. Structural changes of the tibial trabecular and cortical bone were examined using X-ray micro-computed tomography. Femoral bone calcium content and biomechanical strength were also evaluated.

    Results: Annatto tocotrienol at 60 and 100 mg/kg significantly prevented the deterioration of trabecular bone and cortical thickness in buserelin-treated rats (P<0.05). Both doses of annatto tocotrienol also improved femoral biomechanical strength and bone calcium content in buserelin-treated rats (P<0.05). The effects of annatto tocotrienol were comparable to calcium supplementation.

    Conclusion: Annatto tocotrienol supplementation is effective in preventing degeneration of the bone induced by buserelin. Therefore, it is a potential antiosteoporotic agent for men receiving androgen deprivation therapy.

    Matched MeSH terms: Tocotrienols/pharmacology*
  19. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S
    Bone, 2018 11;116:8-21.
    PMID: 29990585 DOI: 10.1016/j.bone.2018.07.003
    Metabolic syndrome (MetS) is associated with osteoporosis due to the underlying inflammatory and hormonal changes. Annatto tocotrienol has been shown to improve medical complications associated with MetS or bone loss in animal studies. This study aimed to investigate the effects of annatto tocotrienol as a single treatment for MetS and osteoporosis in high-carbohydrate high-fat (HCHF) diet-induced MetS animals. Three-month-old male Wistar rats were randomly divided into five groups. The baseline group was euthanized at the onset of the study. The normal group received standard rat chow and tap water. The remaining groups received HCHF diet and treated with three different regimens orally daily: (a) tocopherol-stripped corn oil (the vehicle of tocotrienol), (b) 60 mg/kg annatto tocotrienol, and (c) 100 mg/kg annatto tocotrienol. At the end of the study, measurements of MetS parameters, body compositions, and bone mineral density were performed in animals before sacrifice. Upon euthanasia, blood and femur of the rats were harvested for the evaluations of bone microstructure, biomechanical strength, remodelling activities, hormonal changes, and inflammatory response. Treatment with annatto tocotrienol improved all MetS parameters (except abdominal obesity), trabecular bone microstructure, bone strength, increased osteoclast number, normalized hormonal changes and inflammatory response in the HCHF animals. In conclusion, annatto tocotrienol is a potential agent for managing MetS and osteoporosis concurrently. The beneficial effects of annatto tocotrienol may be attributed to its ability to prevent the hormonal changes and pro-inflammatory state in animals with MetS.
    Matched MeSH terms: Tocotrienols/pharmacology
  20. Selvaduray KR, Radhakrishnan AK, Kutty MK, Nesaretnam K
    J Interferon Cytokine Res, 2010 Dec;30(12):909-16.
    PMID: 21121862 DOI: 10.1089/jir.2010.0021
    Several mechanisms have been postulated for the anticancer effects of tocotrienols. In this study, for the first time, the anticancer effect of tocotrienols is linked to increased expression of interleukin-24 (IL-24) mRNA, a cytokine reported to have antitumor effects in many cancer models. Tocotrienol isomers (α-T3, γ-T3, and δ-T3) and tocotrienol-rich fraction (TRF) inhibited the growth of the 4T1 murine mammary cancer cells (P  γ-T3 > TRF > α-T3 > α-T, which was similar to their antiproliferative effects. The IL-24 mRNA levels in tumor tissues of BALB/c mice supplemented with TRF increased 2-fold when compared with control mice. Increased levels of IL-24 have been associated with inhibition of tumor growth and angiogenesis. Treatment of 4T1 cells with TRF and δ-T3 significantly decreased IL-8 and vascular endothelial growth factor mRNA levels. Hence, we report that tocotrienols have potent antiangiogenic and antitumor effects that is associated with increased levels of IL-24 mRNA.
    Matched MeSH terms: Tocotrienols/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links