In this paper, an image-based waste collection scheduling involving a node with three waste bins is considered. First, the system locates the three bins and determines the waste level of each bin using four Laws Masks and a set of Support Vector Machine (SVM) classifiers. Next, a Hidden Markov Model (HMM) is used to decide on the number of days remaining before waste is collected from the node. This decision is based on the HMM's previous state and current observations. The HMM waste collection scheduling seeks to maximize the number of days between collection visits while preventing waste contamination due to late collection. The proposed system was trained using 100 training images and then tested on 100 test images. Each test image contains three bins that might be shifted, rotated, occluded or toppled over. The upright bins could be empty, partially full or full of garbage of various shapes and sizes. The method achieves bin detection, waste level classification and collection day scheduling rates of 100%, 99.8% and 100% respectively.
The acceleration of growth in the population in Saudi Arabia and the increase in municipal solid waste generation have caused a problem in Dammam city: an increase in solid waste production. Therefore, solid waste sorting is an important practice of municipal solid waste management. The main objectives in this research are understanding the effect of internal and external factors on household willingness in sorting waste in Dammam city and studying the attempts to construct a theoretical research model by adding market incentives, government facilitators, and awareness into the popular planned behaviour theory to explain residents' waste sorting intentions. The data collection and analysis are based on the questionnaire study, which is based on the questionnaire survey data from 450 households in Dammam. This study revealed that social influence significantly predicts households' willingness to sort and recycle, that is, to promote recycling. Additionally, the variable social influence has a significant but low influence on households' willingness to sort and recycle. The result of the structural equation model shows that perceived behavioural control significantly predicts households' willingness to sort and recycle waste. This finding is consistent with the theoretical expectation. Therefore, this research shows that attitude, social influence, perceived behavioural control, market incentives, government facilitators and awareness positively and significantly affect residents' waste sorting intentions. Additionally, this research corroborates the discrepancy between internal and external variables.
Due to its increasing demands for fossil fuels, Indonesia needs an alternative energy to diversify its energy supply. Landfill gas (LFG), which key component is methane (CH4), has become one of the most attractive options to sustain its continued economic development. This exploratory study seeks to demonstrate the added value of landfilled municipal solid waste (MSW) in generating sustainable energy, resulting from CH4 emissions in the Bantargebang landfill (Jakarta). The power generation capacity of a waste-to-energy (WTE) plant based on a mathematical modeling was investigated. This article critically evaluated the production of electricity and potential income from its sale in the market. The project's environmental impact assessment and its socio-economic and environmental benefits in terms of quantitative and qualitative aspects were discussed. It was found that the emitted CH4 from the landfill could be reduced by 25,000 Mt annually, while its electricity generation could reach one million kW ⋅h annually, savings on equivalent electricity charge worth US$ 112 million/year (based on US' 8/kW ⋅ h). An equivalent CO2 mitigation of 3.4 × 106 Mt/year was obtained. The income from its power sale were US$ 1.2 ×106 in the 1st year and 7.7 ×107US$ in the 15th year, respectively, based on the projected CH4 and power generation. The modeling study on the Bantargebang landfill using the LFG extraction data indicated that the LFG production ranged from 0.05 to 0.40 m3 per kg of the landfilled MSW. The LFG could generate electricity as low as US' 8 per kW ⋅ h. With respect to the implications of this study, the revenue not only defrays the cost of landfill's operations and maintenance (O&M), but also provides an incentive and means to further improve its design and operations. Overall, this work not only leads to a diversification of primary energy, but also improves environmental protection and the living standard of the people surrounding the plant.
Postconsumer polyethylene terephthalate (PET) has potential applications in many areas of manufacturing, but contamination by hazardous polyvinyl chloride (PVC) in common waste streams can reduce its recyclable value. Separating collected PET-PVC mixtures before recycling remains very challenging because of the similar physicochemical properties of PET and PVC. Herein, we describe a novel flotation process with corona modification pretreatment to facilitate the separation of PET-PVC mixtures. Through water contact angle, surface free energy, X-ray photoelectron and FT-IR characterization, we found that polar hydroxyl groups can be more easily introduced on the PVC surface than on the PET surface induced by corona modification. This selective wetting can suppress the floatability of PVC, leading to the separation of PET as floating product. A reliable mechanism including two different hydrogen-abstraction pathways was established. Response surface methodology consisting of Plackett-Burman and Box-Behnken designs was adopted for optimization of the combined process, and control parameters were solved based on high-quality prediction models, with fitting from significant variables and interactions. For physical or chemical circulation strategies with PET purity prioritization, the validated purity of the product reached 96.05% at a 626 W corona power, 5.42 m/min passing speed, 24.78 mg/L frother concentration and 286 L/h air flow rate. For the energy recuperation strategy with PET recovery prioritization, the factual recovery reached 98.08% under a 601 W corona power, 6.04 m/min passing speed, 27.55 mg/L frother concentration and 184 L/h air flow rate. The current work provides technological insights into the cleaner disposal of waste plastics.
Plastic waste and its environmental hazards have been attracting public attention as a global sustainability issue. This study builds a neural network model to forecast plastic waste generation of the EU-27 in 2030 and evaluates how the interventions could mitigate the adverse impact of plastic waste on the environment. The black-box model is interpreted using SHapley Additive exPlanations (SHAP) for managerial insights. The dependence on predictors (i.e., energy consumption, circular material use rate, economic complexity index, population, and real gross domestic product) and their interactions are discussed. The projected plastic waste generation of the EU-27 is estimated to reach 17 Mt/y in 2030. With an EU targeted recycling rate (55%) in 2030, the environmental impacts would still be higher than in 2018, especially global warming potential and plastic marine pollution. This result highlights the importance of plastic waste reduction, especially for the clustering algorithm-based grouped countries with a high amount of untreated plastic waste per capita. Compared to the other assessed scenarios, Scenario 4 with waste reduction (50% recycling, 47.6% energy recovery, 2.4% landfill) shows the lowest impact in acidification, eutrophication, marine aquatic toxicity, plastic marine pollution, and abiotic depletion. However, the global warming potential (8.78 Gt CO2eq) is higher than that in 2018, while Scenario 3 (55% recycling, 42.6% energy recovery, 2.4% landfill) is better in this aspect than Scenario 4. This comprehensive analysis provides pertinent insights into policy interventions towards environmental hazard mitigation.
The present study proposes a system for co-composting food waste and poultry manure amended with rice husk biochar at different doses (0, 3, 5, 10%, w/w), saw dust, and salts. The effect of rice husk biochar on the characteristics of final compost was evaluated through stabilization indices such as electrical conductivity, bulk density, total porosity, gaseous emissions and nitrogen conservation. Results indicated that when compared to control, the biochar amendment extended the thermophilic stage of the composting, accelerated the biodegradation and mineralization of substrate mixture and helped in the maturation of the end product. Carbon dioxide, methane and ammonia emissions were reduced and the nitrogen conservation was achieved at a greater level in the 10% (w/w) biochar amended treatments. This study implies that the biochar and salts addition for co-composting food waste and poultry manure is beneficial to enhance the property of the compost.
In this study, municipal solid waste incineration fly ash (MSWIFA) was pretreated with CO2 via slurry carbonation (SC) and dry carbonation coupled with subsequent water washing (DCW). Both the treated MSWIFAs were then used as cement replacement in cement pastes by weight of 10%, 20% and 30% to investigate the influence on hydration mechanisms, physico-mechanical characteristics and leaching properties. The results showed that carbonates formed on the surface of SC-MSWIFA particles were finer (primarily 20-50 nm calcite) than those from the corresponding DCW-MSWIFA (mostly 130-200 nm vaterite). Hence, SC-MSWIFA blended cement pastes led to shorter setting time and higher early compressive strength than the DCW-MSWIFA pastes. In contrast, the presence of vaterite-rich DCW-MSWIFA in the blended cement pastes could accelerate the cement hydration after 24 h. Both the CO2-pretreated MSWIFA can replace cement up to 30% without sacrificing the long-term strength and mechanical properties of cement pastes, demonstrating excellent performance as a supplementary cementitious material. Moreover, volume stability in terms of expansion and lead leaching of CO2-pretreated MSWIFA cement pastes were far below the regulatory limits.
Solid waste generation has rapidly increased due to the worldwide population, urbanization, and industrialization. Solid waste management (SWM) is a significant challenge for a society that arises local issues with global consequences. Thus, solid waste management strategies to recycle waste products are promising practices that positively impact sustainable goals. Several developed countries possess excellent solid waste management strategies to recycle waste products. Developing countries face many challenges, such as municipal solid waste (MSW) sorting and handling due to high population density and economic instability. This mismanagement could further expedite harmful environmental and socioeconomic concerns. This review discusses the current solid waste management and energy recovery production in developing countries; with statistics, this review provides a comprehensive revision on energy recovery technologies such as the thermochemical and biochemical conversion of waste with economic considerations. Furthermore, the paper discusses the challenges of SWM in developing countries, including several immediate actions and future policy recommendations for improving the current status of SWM via harnessing technology. This review has the potential of helping municipalities, government authorities, researchers, and stakeholders working on MSW management to make effective decisions for improved SWM for achieving sustainable development.
The increase in landfill leachate generation is due to the increase of municipal solid waste (MSW) as global development continues. Landfill leachate has constantly been the most challenging issue in MSW management as it contains high amount of organic and inorganic compounds that might cause pollution to water resources. Biologically treated landfill leachate often fails to fulfill the regulatory discharge standards. Thus, to prevent environmental pollution, many landfill leachate treatment plants involve multiple stages treatment process. The Papan Landfill in Perak, Malaysia currently has no proper leachate treatment system. In the current study, sequential treatment via sequencing batch reactor (SBR) followed by coagulation was used to treat chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N), total suspended solids (TSS), and colour from raw landfill leachate. SBR optimum aeration rate, L/min, optimal pH and dosage (g/L) of Alum for coagulation as a post-treatment were determined. The two-step sequential treatment by SBR followed by coagulation (Alum) achieved a removal efficiency of 84.89%, 94.25%, 91.82% and 85.81% for COD, NH3-N, TSS and colour, respectively. Moreover, the two-stage treatment process achieved 95.0% 95.0%, 95.3%, 100.0%, 87.2%, 62.9%, 50.0%, 41.3%, 41.2, 34.8, and 22.9 removals of Cadmium, Lead, Copper, Selenium, Barium, Iron, Silver, Nickel, Zinc, Arsenic, and Manganese, respectively.
The treatment of stabilized landfill leachate (SLL) by conventional biological treatment is often inefficient due to the presence of bio-recalcitrant substances. In this study, the feasibility of coagulation-flocculation coupled with the Fenton reaction in the treatment of SLL was evaluated. The efficiency of the selected treatment methods was evaluated through total organic carbon (TOC) removal from SLL. With ferric chloride as the coagulant, coagulation-flocculation was found to achieve the highest TOC removal of 71% at pH 6. Then, the pretreated SLL was subjected to the Fenton reaction. Nearly 50% of TOC removal was achieved when the reaction was carried out at pH 3, H2O2:Fe2+ ratio of 20:1, H2O2 dosage of 240 mM and 1 h of reaction time. By coupling the coagulation-flocculation with the Fenton reaction, the removal of TOC, COD (chemical oxygen demand) and turbidity of SLL were 85%, 84% and 100%, respectively. The ecotoxicity study performed using zebrafish revealed that 96 h LC50 for raw SLL was 1.40% (v/v). After coagulation-flocculation, the LC50 of the pretreated SLL was increased to 25.44%. However, after the Fenton reaction, the LC50 of the treated SLL was found to decrease to 10.96% due to the presence of H2O2 residue. In this study, H2O2 residue was removed using powdered activated charcoal. This method increased the LC50 of treated effluent to 34.48% and the removal of TOC and COD was further increased to 90%. This finding demonstrated that the combination of the selected treatment methods can be an efficient treatment method for SLL.
The present study explores the potential of MSW gasification for exergy analysis and has been recently given a premier attention in a region like Pakistan where the urbanization is rapidly growing and resources are few. The plant capacity was set at 50 MW based on reference data available and the total exergetic efficiency was recorded to be 31.5 MW. The largest irreversibility distribution appears in the gasifier followed by methanation unit and CO2 capture. The effect of process temperature, equivalence ratio and MSW moisture content was explored for inspecting the variations in syngas composition, lower heating value, carbon conversion efficiency and cold gas efficiency. Special attention of the paper is paid to the comparative assessment of MSW gasification products in four regions, namely Pakistan, USA, UAE and Thailand. This extended study gave an insight into the spectrum of socioeconomic conditions with varying MSW compositions in order to explain the effect of MSW composition variance on the gasification products.
Apart from the health aspects and the high death toll, the COVID-19 pandemic has, since its official recognition in March 2020 caused may social and economic problems. It has also led to many environmental ones. For instance, the lockdowns have led to higher levels of consumption of packaged products, and of take-away food. This paper reports on an international study on the increased consumption and subsequent changes in the amounts of waste produced since the COVID-19 pandemic. The results show that 45-48% of the respondents observed an increased consumption of packed food, fresh food, and food delivery. One of the main reasons for the increased waste generation during the lockdown was the fact that people have spent more time at home. In addition, increases of 43% and 53% in food waste and plastic packaging. Drawing from comparisons on the amount of domestic waste produced before and during the pandemic, the findings suggest that some specific types of municipal waste have visibly increased, putting additional pressure on waste management systems. This characterises one of non-intended effects of the COVID-19 pandemic. The results from this study provide useful insights to city administrations and municipal utilities on consumption patterns during emergency situations. This, in turn, may support more systemic and strategic measures to be taken, so as to curtail the increase of household waste during pandemic situations.
The world has been grappling with the crisis of the COVID-19 pandemic for more than a year. Various sectors have been affected by COVID-19 and its consequences. The waste management system is one of the sectors affected by such unpredictable pandemics. The experience of COVID-19 proved that adaptability to such pandemics and the post-pandemic era had become a necessity in waste management systems and this requires an accurate understanding of the challenges that have been arising. The accurate information and data from most countries severely affected by the pandemic are not still available to identify the key challenges during and post-COVID-19. The documented evidence from literature has been collected, and the attempt has been made to summarize the rising challenges and the lessons learned. This review covers all raised challenges concerning the various aspects of the waste management system from generation to final disposal (i.e., generation, storage, collection, transportation, processing, and burial of waste). The necessities and opportunities are recognized for increasing flexibility and adaptability in waste management systems. The four basic pillars are enumerated to adapt the waste management system to the COVID-19 pandemic and post-COVID-19 conditions. Striving to support and implement a circular economy is one of its basic strategies.
There are limited methods to assess how dietary patterns adhere to a healthy and sustainable diet. The aim of this study was to develop a theoretically derived Healthy and Sustainable Diet Index (HSDI). The HSDI uses 12 components within five categories related to environmental sustainability: animal-based foods, seasonal fruits and vegetables, ultra-processed energy-dense nutrient-poor foods, packaged foods and food waste. A maximum of 90 points indicates the highest adherence. The HSDI was applied to 4-day mobile food records (mFRTM) from 247 adults (18−30 years). The mean HSDI score was 42.7 (SD 9.3). Participants who ate meat were less likely to eat vegetables (p < 0.001) and those who ate non-animal protein foods were more likely to eat more fruit (p < 0.001), vegetables (p < 0.05), and milk, yoghurt and cheese (p < 0.05). After adjusting for age, sex and body mass index, multivariable regression found the strongest predictor of the likelihood of being in the lowest total HSDI score tertile were people who only took a bit of notice [OR (95%CI) 5.276 (1.775, 15.681) p < 0.005] or did not pay much/any attention to the health aspects of their diet [OR (95%CI) 8.308 (2.572, 26.836) p < 0.0001]. HSDI provides a new reference standard to assess adherence to a healthy and sustainable diet.
The rapidly increasing generation of municipal solid waste (MSW) threatens the environmental integrity and well-being of humans at a global level. Incineration is regarded as a technically sound technology for the management of MSW. However, the effective management of the municipal solid waste incineration (MSWI) ashes remains a challenge. This article presents the global dynamics of MSWI ashes research from 1994 to 2018 based on a bibliometric analysis of 1810 publications (research articles and conference proceedings) extracted from the Web of Science database, followed by a comprehensive summary on the research developments in the field. The results indicate the rapid growth of annual publications on MSWI ashes research, with China observed as the most productive country within the study period. Waste Management, Journal of Hazardous Materials, Chemosphere and Waste Management & Research, which accounted for 35.42% of documents on MSWI research, are the most prominent journals in the field. The most critical thematic areas on this topic are MSWI ashes characterisation, dioxin emissions from fly ash, valorisation of bottom ash and heavy metal removal. The evolution of MSWI ashes treatment technologies is also discussed, together with the challenges and future research directions. This is the first bibliometric analysis on global MSWI ashes research based on a sufficiently large dataset, which could provide new insights for researchers to initiate further research with leading institutions/authors and ultimately advance this research field.
This study aims to investigate the impact of utilizing lactic acid fermentation (LAF) as storage method of food waste (FW) prior to dark fermentation (DF). LAF of FW was carried out in batches at six temperatures (4 °C, 10 °C, 23 °C, 35 °C, 45 °C, and 55 °C) for 15 days followed by biological hydrogen potential (BHP) tests. Different storage temperatures resulted in different metabolites distribution, with either lactate or ethanol being dominant (159.2 ± 20.6 mM and 234.4 ± 38.2 mM respectively), but no negative impact on BHP (averaging at 94.6 ± 25.1 mL/gVS). Maximum hydrogen production rate for stored FW improved by at least 57%. Microbial analysis showed dominance of lactic acid bacteria (LAB) namely Lactobacillus sp., Lactococcus sp., Weisella sp., Streptococcus sp. and Bacillus sp. after LAF. Clostridium sp. emerged after DF, co-existing with LAB. Coupling LAF as a storage method was demonstrated as a novel strategy of FW management for DF, for a wide range of temperatures.
Food waste has been considered a global problem due to its adverse impacts on food security, the environment, and the economy; hence needs urgent attention and action. Its generation is expected to increase as the world population grows rapidly, leading to more global waste. This study sought the impacts of the COVID-19 outbreak on the 1-week operation of selected casual dining restaurants in urban (Ampang, Kuala Lumpur) and suburban areas (Kota Bharu, Kelantan and Jasin, Melaka) of Peninsular Malaysia, as the local community adjusted to life with COVID-19. The food waste in this study was classified into three categories: preparation loss, serving loss, and customer's plate waste. Our material flow analysis revealed that the highest food loss at these locations came from preparation loss (51.37%), followed by serving loss (30.95%), and preparation loss (17.8%). Meanwhile, the total average electricity consumption and its carbon footprint for Ampang were 127 kWh and 13.87 kgCO2e, Kota Bharu 269.8 kWh and 29.47 kgCO2e, and Jasin 142.2 kWh and 15.54 kgCO2e, respectively. As for water, Ampang exhibited 22.93 m3 total average consumption and 7.91 kgCO2e greenhouse emissions from this source, Jasin consuming 17.11 m3 of water and releasing 5.88 kgCO2e of carbon footprint, while Kota Bharu emitted 20.21 kgCO2e of greenhouse gases from its 58.71 m3 water consumption. Our findings indicate a major 'food leak' at the preparation stage, from which the waste could be utilised as livestock feed, and that electricity consumption is a greater carbon emitter than water consumption, suggesting a need for improvement to the kitchen practices and equipment.
This review provides the history and current paradigms of waste management (WM) practices in developing nations during the last five decades. It explores the evolution of the challenges, complexities, and trends during this period. This paper, for the first time, presents an estimation of the amount of municipal solid waste (MSW) generated in developing nations in the last five decades based on the material flow analysis approach. Overall, the amount of MSW in developing countries has increased from about 0.64 billion Mt in 1970 to 2 billion Mt in 2019. This review demonstrates the importance of finding new WM approaches in developing nations in the context of formulating policies, strategies, and highlights the major trends that re-define WM in developing countries. It also aims to present the holistic changes in technology, economic and environmental feasibility aspects to attain an integrated sustainable WM system in developing countries. Specific focus on open-burning, open-dumping, informal recycling, food waste, plastic pollution, and waste collection with reference to Sustainable Development Goals are explained. Drivers for the way forward including circular economy are investigated.
Growing populations, expanding economies, industrialisation, and urbanisation pose a problem for waste management in developing countries. Their waste management methods, on the other hand, are not as efficient as they could be. Most developing countries' current waste management practices do not fully conform to developed countries' best practices for meeting socioeconomic goals. As a result, the importance of waste management in developing countries has grown in recent years. In order to highlight the socioeconomic perspectives of waste management practices, the present study examines the existing literature, policies, information, and records on waste management in developing nations. The findings indicate that essential socioeconomic factors such as finances, population density, per capita income, education level, policies, and technology have a significant impact on waste management, which encompasses waste generation, collection, composition, and disposal/treatment. Nonetheless, waste management has a number of economic benefits, including financial stability, job creation, and community cohesion. This study will inspire further research on the need for developing nations to consider the socioeconomic benefits of proper waste management and to develop a policy plan to achieve these benefits.
E-waste, encompassing discarded materials from outdated electronic equipment, often ends up intermixed with municipal solid waste, leading to improper disposal through burial and incineration. This improper handling releases hazardous substances into water, soil, and air, posing significant risks to ecosystems and human health, ultimately entering the food chain and water supply. Formal e-waste recycling, guided by circular economy models and zero-discharge principles, offers potential solutions to this critical challenge. However, implementing a circular economy for e-waste management due to chemical and energy consumption may cause environmental impacts. Consequently, advanced sustainability assessment tools, such as Life Cycle Assessment (LCA), have been applied to investigate e-waste management strategies. While LCA is a standardized methodology, researchers have employed various routes for environmental assessment of different e-waste management methods. However, to the authors' knowledge, there lacks a comprehensive study focusing on LCA studies to discern the opportunities and limitations of this method in formal e-waste management strategies. Hence, this review aims to survey the existing literature on the LCA of e-waste management under a circular economy, shedding light on the current state of research, identifying research gaps, and proposing future research directions. It first explains various methods of managing e-waste in the circular economy. This review then evaluates and scrutinizes the LCA approach in implementing the circular bioeconomy for e-waste management. Finally, it proposes frameworks and procedures to enhance the applicability of the LCA method to future e-waste management research. The literature on the LCA of e-waste management reveals a wide variation in implementing LCA in formal e-waste management, resulting in diverse results and findings in this field. This paper underscores that LCA can pinpoint the environmental hotspots for various pathways of formal e-waste recycling, particularly focusing on metals. It can help address these concerns and achieve greater sustainability in e-waste recycling, especially in pyrometallurgical and hydrometallurgical pathways. The recovery of high-value metals is more environmentally justified compared to other metals. However, biometallurgical pathways remain limited in terms of environmental studies. Despite the potential for recycling e-waste into plastic or glass, there is a dearth of robust background in LCA studies within this sector. This review concludes that LCA can offer valuable insights for decision-making and policy processes on e-waste management, promoting environmentally sound e-waste recycling practices. However, the accuracy of LCA results in e-waste recycling, owing to data requirements, subjectivity, impact category weighting, and other factors, remains debatable, emphasizing the need for more uncertainty analysis in this field.