OBJECTIVE: To elaborate on the clinical findings, biochemical data, molecular genetic analysis, and short-term prognosis of 13 GSD1a patients in Malaysia.
METHODS: The information about 13 clinically classified GSD1a patients was retrospectively studied. The G6PC mutation analysis was performed by PCR-DNA sequencing.
RESULTS: Patients were presented with hepatomegaly (92%), hypoglycaemia (38%), poor weight gain (23%), and short stature (15%). Mutation analysis revealed nine heterozygous mutations; eight previously reported mutations (c.155 A > T, c.209 G > A, c.226 A > T, c.248 G > A, c.648 G > T, c.706 T > A, c.1022 T > A, c.262delG) and a novel mutation (c.325 T > C). The most common mutation found in Malaysian patients was c.648 G > T in ten patients (77%) of mostly Malay ethnicity, followed by c.248 G > A in 4 patients of Chinese ethnicity (30%). A novel missense mutation (c.325 T > C) was predicted to be disease-causing by various in silico software.
CONCLUSIONS: The establishment of G6PC molecular genetic testing will enable the detection of presymptomatic patients, assisting in genetic counselling while avoiding the invasive methods of liver biopsy.
Methods: Triptolide's inhibition of cell viability was detected by sulforhodamine B (SRB) assay. Cell cycle was measured by flow cytometry and cell apoptosis was assessed by flow cytometry and western blot. Expression of β-catenin was analyzed by western blot and immunofluorescence (IF). The anti-tumor effects of triptolide were determined using a subcutaneous in-vivo model. Cell proliferation and apoptosis were evaluated by immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, respectively. The expression level of p-p70S6K and p-GSK-3α/β was evaluated by western blot and IHC.
Results: Triptolide inhibited cell proliferation, induced S-phase cell cycle arrest and apoptosis in taxol-resistant A549 (A549/TaxR) cells. Moreover, intraperitoneal injection of triptolide resulted in a significant delay of tumor growth without obvious systemic toxicity in mice. Additionally, triptolide reversed epithelial-mesenchymal transition (EMT) through repression of the p70S6K/GSK3/β-catenin signaling pathway.
Conclusions: Our study provides evidence that triptolide can reverse EMT in taxol-resistant lung adenocarcinoma cells and impairs tumor growth by inhibiting the p70S6K/GSK3/β-catenin pathway, indicating that triptolide has potential to be used as a new therapeutic agent for taxol-resistant lung adenocarcinoma.