Displaying publications 61 - 80 of 205 in total

Abstract:
Sort:
  1. Tan WS, McNae IW, Ho KL, Walkinshaw MD
    PMID: 17671358
    Hepatitis B core (HBc) particles have been extensively exploited as carriers for foreign immunological epitopes in the development of multicomponent vaccines and diagnostic reagents. Crystals of the T = 4 HBc particle were grown in PEG 20,000, ammonium sulfate and various types of alcohols. A temperature jump from 277 or 283 to 290 K was found to enhance crystal growth. A crystal grown using MPD as a cryoprotectant diffracted X-rays to 7.7 A resolution and data were collected to 99.6% completeness at 8.9 A. The crystal belongs to space group P2(1)2(1)2(1), with unit-cell parameters a = 352.3, b = 465.5, c = 645.0 A. The electron-density map reveals a protrusion that is consistent with the N-terminus extending out from the surface of the capsid. The structure presented here supports the idea that N-terminal insertions can be exploited in the development of diagnostic reagents, multicomponent vaccines and delivery vehicles into mammalian cells.
    Matched MeSH terms: Crystallography, X-Ray
  2. Khusaini MS, Rahman RN, Mohamad Ali MS, Leow TC, Basri M, Salleh AB
    PMID: 21393852 DOI: 10.1107/S1744309111002028
    An organic solvent-tolerant lipase from Bacillus sp. strain 42 was crystallized using the capillary-tube method. The purpose of studying this enzyme was in order to better understand its folding and to characterize its properties in organic solvents. By initially solving its structure in the native state, further studies on protein-solvent interactions could be performed. X-ray data were collected at 2.0 Å resolution using an in-house diffractometer. The estimated crystal dimensions were 0.09×0.19×0.08 mm. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a=117.41, b=80.85, c=99.44 Å, β=96.40°.
    Matched MeSH terms: Crystallography, X-Ray
  3. Teerapongpisan P, Monkantha T, Yimklan S, Mah SH, Gunter NV, Promnart P, et al.
    J Nat Prod, 2024 Jun 28;87(6):1611-1617.
    PMID: 38805684 DOI: 10.1021/acs.jnatprod.4c00248
    The first phytochemical investigation of the twig extract of Uvaria leptopoda resulted in the isolation and identification of three new tetrahydroxanthene-1,3(2H)-diones, uvarialeptones A-C, two new oxidized hexadiene derivatives, uvarialeptols A and B, together with ten known compounds. Their structures were elucidated by spectroscopic techniques and mass spectrometry. Uvarialeptones A and B were unprecedented tetrahydroxanthene-1,3(2H)-dione dimers which exhibited a cyclobutane ring via [2 + 2] cycloaddition from uvarialeptone C and 9a-O-methyloxymitrone, respectively. The structure of uvarialeptone A was confirmed by X-ray diffraction analysis using Mo Kα radiation. Compound 3 inhibited NO production at an IC50 value of 6.7 ± 0.1 μM.
    Matched MeSH terms: Crystallography, X-Ray
  4. Ramle AQ, Chan NNMY, Ng MP, Tan CH, Sim KS, Tiekink ERT, et al.
    Mol Divers, 2024 Jun;28(3):1363-1376.
    PMID: 37278911 DOI: 10.1007/s11030-023-10662-2
    Five new compounds of benz[e]indole pyrazolyl-substituted amides (2a-e) were synthesised in low to good yields via the direct amide-coupling reaction between a pyrazolyl derivative containing a carboxylic acid and several amine substrates. The molecular structures were determined by various spectroscopic methods, such as NMR (1H, 13C and 19F), FT-IR and high-resolution mass spectrometry (HRMS). X-ray crystallographic analysis on the 4-fluorobenzyl derivative (2d) reveals the amide-O atom to reside to the opposite side of the molecule to the pyrazolyl-N and pyrrolyl-N atoms; in the molecular packing, helical chains feature amide-N‒H⋯N(pyrrolyl) hydrogen bonds. Density-functional theory (DFT) at the geometry-optimisation B3LYP/6-31G(d) level on the full series shows general agreement with the experimental structures. While the LUMO in each case is spread over the benz[e]indole pyrazolyl moiety, the HOMO spreads over the halogenated benzo-substituted amide moieties or is localised near the benz[e]indole pyrazolyl moieties. The MTT assay showed that 2e, exhibited the highest toxicity against a human colorectal carcinoma (HCT 116 cell line) without appreciable toxicity towards the normal human colon fibroblast (CCD-18Co cell line). Based on molecular docking calculations, the probable cytotoxic mechanism of 2e is through the DNA minor groove binding.
    Matched MeSH terms: Crystallography, X-Ray
  5. Lushchekina S, Weiner L, Ashani Y, Emrizal R, Firdaus-Raih M, Silman I, et al.
    Protein Sci, 2024 Dec;33(12):e5206.
    PMID: 39548604 DOI: 10.1002/pro.5206
    We earlier showed that Torpedo californica acetylcholinesterase (AChE) contains a cluster of four conserved aspartates that can strongly bind divalent cations, which we named the 4D motif. Binding of the divalent metal cations greatly increases its thermal stability. Here we systematically examined all available crystallographic structures of T. californica AChE. Two additional metal-binding sites were identified, both composed of acidic and histidine residues. Relative binding to the 4D and additional sites was studied using metadynamics simulations. It was observed that in crystal structures devoid of metal ions in the 4D site, the conformation of T. californica AChE is almost identical to that in structures in which it is occupied by a divalent metal ion. Closer examination of the 4D motif reveals that three of the four acidic residues form ion pairs with conserved basic residues surrounding them. We named this new motif the 4A/3B motif. Molecular dynamics with quantum potential simulations was used to quantify the 4D motif's binding strength compared with that of the metal-binding site in the protein fXIIIa, which consists of four aspartates, but is devoid of adjacent cationic residues. Whereas fXIIIa's 4D site, in the absence of a metal cation, expanded significantly in the simulation, that of Torpedo AChE displayed only minor periodic changes in size. Furthermore, the energy of metal ion unbinding from the two sites differs by ca. 10 kcal/mol. We identified several other proteins in the PDB that contain the 4A/3B motif, whose conformations are identical in the presence or absence of a metal ion. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at https://proteopedia.org/w/Journal:Protein_Science:4.
    Matched MeSH terms: Crystallography, X-Ray
  6. de Almeida Santos G, Englund ANB, Dalleywater EL, Røhr ÅK
    FEBS Open Bio, 2024 Dec;14(12):2038-2058.
    PMID: 39382070 DOI: 10.1002/2211-5463.13906
    Tyrosinases (TYRs) are type-3 copper proteins that are widely distributed in nature. They can hydroxylate and oxidize phenolic molecules and are mostly known for producing melanins that confer protection against photo induced damage. TYRs are also thought to play an important role in the 'latch mechanism', where high concentrations of phenolic compounds inhibit oxidative decomposition of organic biomass and subsequent CO2 release, especially relevant in wetland environments. In the present study, we describe two TYRs, HcTyr1 and HcTyr2, from halophilic bacterium Hahella sp. CCB MM4 previously isolated at Matang mangrove forest in Perak, Malaysia. The structure of HcTyr1 was determined by X-ray crystallography at a resolution of 1.9 Å and represents an uncharacterized group of prokaryotic TYRs as demonstrated by a sequence similarity network analysis. The genes encoding the enzymes were cloned, expressed, purified and thoroughly characterized by biochemical methods. HcTyr1 was able to self-cleave its lid-domain (LID) in a protease independent manner, whereas the LID of HcTyr2 was essential for activity and stability. Both enzymes showed variable activity in the presence of different metals, surfactants and NaCl, and were able to oxidize lignin constituents. The high salinity tolerance of HcTyr1 indicates that the enzyme can be an efficient catalyst in the habitat of the host.
    Matched MeSH terms: Crystallography, X-Ray
  7. Goh KM, Liew KJ, Chai KP, Illias RM
    Methods Mol Biol, 2017;1498:385-396.
    PMID: 27709591
    Protein engineering is a very useful tool for probing structure-function relationships in proteins. Specifically, site-directed mutagenized proteins can provide useful insights into structural, binding and catalytic mechanisms of a protein, particularly when coupled with crystallization. In this chapter, we describe two protocols for performing site-directed mutagenesis of any protein-coding sequence, namely, megaprimer PCR and overlapping extension PCR (OE-PCR). We use as an example how these two SDM methods enhanced the function of a cyclodextrin glucosyltransferase (CGTase) from Bacillus lehensis strain G1.
    Matched MeSH terms: Crystallography, X-Ray/methods
  8. Zafar MN, Butt AM, Chaudhry GE, Perveen F, Nazar MF, Masood S, et al.
    J Inorg Biochem, 2021 11;224:111590.
    PMID: 34507110 DOI: 10.1016/j.jinorgbio.2021.111590
    The bidentate N-(1-Alkylpyridin-4(1H)-ylidene)amide (PYA) pro-ligands [H2LBn][Cl]2 (2), and [H2LMe][TfO]2 (3) were prepared by simple alkylation reactions of the known compound, N,N-di(pyridin-4-yl)oxalamide (H2L, 1). The Pd(II) complexes, [Pd(LBn)2][Cl]2 (4), [Pd(LMe)2][Cl][TfO] (5), Pd(LBn)Cl2 (6) and Pd(LMe)Cl2 (7) were synthesized through reactions between these pro-ligands and suitable Pd(II) substrates in the presence of base. The molecular structures of 3 and 6 were obtained by single crystal X-ray structure determinations. Studies of the experimental and computational DNA binding interactions of the compounds 1-7 revealed that overall 4 and 6 have the largest values for the binding parameters Kb and ΔGbo. The results showed a good correlation with the steric and electronic parameters obtained by quantitative structure activity relationship (QSAR) studies. In-vitro cytotoxicity studies against four different cell lines showed that the human breast cancer cell lines MCF-7, T47D and cervical cancer cell line HeLa had either higher or similar sensitivities towards 4, 6 and 2, respectively, compared to cisplatin. In general, the cytotoxicity of the compounds, represented by IC50 values, decreased in the order 4 > 6 > 2 > 5 > 3 > 1 > 7 in cancer cell lines. Apoptosis contributed significantly to the cytotoxic effects of these anticancer agents as evaluated by apoptosis studies.
    Matched MeSH terms: Crystallography, X-Ray/methods
  9. Hussein MA, Guan TS, Haque RA, Khadeer Ahamed MB, Abdul Majid AM
    Spectrochim Acta A Mol Biomol Spectrosc, 2015 Feb 05;136 Pt C:1335-48.
    PMID: 25456676 DOI: 10.1016/j.saa.2014.10.021
    Four dioxomolybdenum(VI) complexes were synthesized by reacting [MoO2(acac)2] with N-ethyl-2-(5-bromo-2-hydroxybenzylidene) hydrazinecarbothioamide (1), N-ethyl-2-(5-allyl-3-methoxy-2-hydroxybenzylidene) hydrazinecarbothioamide (2), N-methyl-2-(3-tert-butyl-2-hydroxybenzylidene) hydrazinecarbothioamide (3), and N-ethyl-2-(3-methyl-2-hydroxybenzylidene) hydrazinecarbothioamide (4). The molecular structures of 1, 2, and all the synthesized complexes were determined using single crystal X-ray crystallography. The binding properties of the ligand and complexes with calf thymus DNA (CT-DNA) were investigated via UV, fluorescence titrations, and viscosity measurement. Gel electrophoresis revealed that all the complexes cleave pBR 322 plasmid DNA. The cytotoxicity of the complexes were studied against the HCT 116 human colorectal cell line. All the complexes exhibited more pronounced activity than the standard reference drug 5-fluorouracil (IC50 7.3μM). These studies show that dioxomolybdenum(VI) complexes could be potentially useful in chemotherapy.
    Matched MeSH terms: Crystallography, X-Ray
  10. Arunagiri C, Subashini A, Saranya M, Thomas Muthiah P, Thanigaimani K, Abdul Razak I
    PMID: 25084236 DOI: 10.1016/j.saa.2014.07.016
    The molecular structure of a new Schiff base, 2-[4-hydroxy benzylidene]-amino naphthalene (HBAN) has been examined by HF and B3LYP/6-311++G(d,p) calculations. The X-ray structure was determined in order to establish the conformation of the molecule. The compound, C17H13NO, crystallizes in the orthorhombic, P212121 space group with the cell dimension, a=6.2867(2), b=10.2108(3), c=19.2950(6) Å, α=β=γ=90° and z=4. The asymmetric unit contains a molecule of a Schiff base. A strong intermolecular O-H⋯N and a weak C-H⋯O hydrogen bonds stabilized the crystal structure. The vibrational spectra of HBAN have been calculated using density functional theoretical computation and compared with the experimental. The study is extended to the HOMO-LUMO analysis to calculate the energy gap (Δ), Ionization potential (I), Electron Affinity (A), Global Hardness (η), Chemical Potential (μ) and Global Electrophilicity (w). The calculated HOMO and LUMO energy reveals that the charge transfer occurs within the molecule.
    Matched MeSH terms: Crystallography, X-Ray
  11. Tan SJ, Lim JL, Low YY, Sim KS, Lim SH, Kam TS
    J Nat Prod, 2014 Sep 26;77(9):2068-80.
    PMID: 25211145 DOI: 10.1021/np500439u
    A total of 20 new indole alkaloids comprising mainly oxidized derivatives of macroline- (including alstofonidine, a macroline indole incorporating a butyrolactone ring-F), pleiocarpamine-, and sarpagine-type alkaloids were isolated from the bark and leaf extracts of Alstonia angustifolia. The structures and relative configurations of these alkaloids were determined using NMR and MS analyses and in some instances confirmed by X-ray diffraction analyses. Alkaloids 3, 7, 35, and 41 showed moderate to weak activity, while 21 showed strong activity in reversing multidrug resistance in vincristine-resistant KB cells.
    Matched MeSH terms: Crystallography, X-Ray
  12. Kamarudin NH, Jalil AA, Triwahyono S, Artika V, Salleh NF, Karim AH, et al.
    J Colloid Interface Sci, 2014 May 1;421:6-13.
    PMID: 24594025 DOI: 10.1016/j.jcis.2014.01.034
    Mesoporous silica nanoparticles (MSNs) were synthesized with variable microwave power in the range of 100-450 W, and the resulting enhancement of MSN crystal growth was evaluated for the adsorption and release of ibuprofen. X-ray diffraction (XRD) revealed that the MSN prepared under the highest microwave power (MSN450) produced the most crystallized and prominent mesoporous structure. Enhancement of the crystal growth improved the hexagonal order and range of silica, which led to greater surface area, pore width and pore volume. MSN450 exhibited higher ibuprofen adsorption (98.3 mg/g), followed by MSN300(81.3 mg/g) and MSN100(74.1 mg/g), confirming that more crystallized MSN demonstrated higher adsorptivity toward ibuprofen. Significantly, MSN450 also contained more hydroxyl groups that provided more adsorption sites. In addition, MSN450 exhibited comparable ibuprofen adsorption with conventionally synthesized MSN, indicating the potential of microwave treatment in the synthesis of related porous materials. In vitro drug release was also investigated with simulated biological fluids and the kinetics was studied under different pH conditions. MSN450 showed the slowest release rate of ibuprofen, followed by MSN300 and MSN100. This was due to the wide pore diameter and longer range of silica order of the MSN450. Ibuprofen release from MSN450 at pH 5 and 7 was found to obey a zero-order kinetic model, while release at pH 2 followed the Kosmeyer-Peppas model.
    Matched MeSH terms: Crystallography, X-Ray
  13. Gan S, Zakaria S, Chia CH, Kaco H, Padzil FN
    Carbohydr Polym, 2014 Jun 15;106:160-5.
    PMID: 24721064 DOI: 10.1016/j.carbpol.2014.01.076
    Cellulose carbamate (CCs) was produced from kenaf core pulp (KCP) using microwave reactor-assisted method. The effects of urea concentration and reaction time on the formation of nitrogen content in CCs were investigated. The CCs' solubility in LiOH/urea system was determined and its membranes were characterized. As the urea content and reaction time increased, the nitrogen content form in CCs increased which enhanced the CCs' solubility. The formation of CCs was confirmed by Fourier transform infrared spectroscopy (FT-IR) and nitrogen content analysis. The CCs' morphology was examined using Scanning electron microscopy (SEM). The cellulose II and crystallinity index of the membranes were confirmed by X-ray diffraction (XRD). The pore size of the membrane displayed upward trend with respect to the urea content observed under Field emission scanning electron microscope (FESEM). This investigation provides a simple and efficient procedure of CCs determination which is useful in producing environmental friendly regenerated CCs.
    Matched MeSH terms: Crystallography, X-Ray
  14. Khan KM, Rahim F, Wadood A, Kosar N, Taha M, Lalani S, et al.
    Eur J Med Chem, 2014 Jun 23;81:245-52.
    PMID: 24844449 DOI: 10.1016/j.ejmech.2014.05.010
    In our effort directed toward the discovery of new anti-diabetic agent for the treatment of diabetes, a library of biscoumarin derivative 1-18 was synthesized and evaluated for α-glucosidase inhibitory potential. All eighteen (18) compounds displayed assorted α-glucosidase activity with IC50 values 16.5-385.9 μM, if compared with the standard acarbose (IC50 = 906 ± 6.387 μM). In addition, molecular docking studies were carried out to explore the binding interactions of biscoumarin derivatives with the enzyme. This study has identified a new class of potent α-glucosidase inhibitors.
    Matched MeSH terms: Crystallography, X-Ray
  15. Chew ST, Lo KM, Lee SK, Heng MP, Teoh WY, Sim KS, et al.
    Eur J Med Chem, 2014 Apr 9;76:397-407.
    PMID: 24602785 DOI: 10.1016/j.ejmech.2014.02.049
    Four new copper(II) complexes containing phosphonium substituted hydrazone (L) with the formulations [CuL]Cl(3), [Cu(phen)L]Cl(4), [Cu(bpy)L]Cl(5), [Cu(dbpy)L]Cl(6), (where L = doubly deprotonated hydrazone; phen = 1,10'-phenanthroline; bpy = 2,2'-bipyridine; dbpy = 5,5'-dimethyl-2,2'-bipyridine) have been synthesized. The compounds were characterized by elemental analysis, spectroscopic methods and in the case of crystalline products by X-ray crystallography. The cytotoxicity and topoisomerase I (topo I) inhibition activities of these compounds were studied. It is noteworthy that the addition of N,N-ligands to the copper(II) complex lead to the enhancement in the cytotoxicity of the compounds, especially against human prostate adenocarcinoma cell line (PC-3). Complex 4 exhibits the highest activity against PC-3 with the IC₅₀ value of 3.2 μΜ. The complexes can also inhibit topo I through the binding to DNA and the enzyme.
    Matched MeSH terms: Crystallography, X-Ray
  16. Ataollahi F, Pramanik S, Moradi A, Dalilottojari A, Pingguan-Murphy B, Wan Abas WA, et al.
    J Biomed Mater Res A, 2015 Jul;103(7):2203-13.
    PMID: 24733741 DOI: 10.1002/jbm.a.35186
    Extracellular environments can regulate cell behavior because cells can actively sense their mechanical environments. This study evaluated the adhesion, proliferation and morphology of endothelial cells on polydimethylsiloxane (PDMS)/alumina (Al2 O3 ) composites and pure PDMS. The substrates were prepared from pure PDMS and its composites with 2.5, 5, 7.5, and 10 wt % Al2 O3 at a curing temperature of 50°C for 4 h. The substrates were then characterized by mechanical, structural, and morphological analyses. The cell adhesion, proliferation, and morphology of cultured bovine aortic endothelial (BAEC) cells on substrate materials were evaluated by using resazurin assay and 1,1'-dioctadecyl-1,3,3,3',3'-tetramethylindocarbocyanine perchlorate-acetylated LDL (Dil-Ac-LDL) cell staining, respectively. The composites (PDMS/2.5, 5, 7.5, and 10 wt % Al2 O3 ) exhibited higher stiffness than the pure PDMS substrate. The results also revealed that stiffer substrates promoted endothelial cell adhesion and proliferation and also induced spread morphology in the endothelial cells compared with lesser stiff substrates. Statistical analysis showed that the effect of time on cell proliferation depended on stiffness. Therefore, this study concludes that the addition of different Al2 O3 percentages to PDMS elevated substrate stiffness which in turn increased endothelial cell adhesion and proliferation significantly and induced spindle shape morphology in endothelial cells.
    Matched MeSH terms: Crystallography, X-Ray
  17. Low YY, Hong FJ, Lim KH, Thomas NF, Kam TS
    J Nat Prod, 2014 Feb 28;77(2):327-38.
    PMID: 24428198 DOI: 10.1021/np400922x
    Several transformations of the seco Aspidosperma alkaloid leuconolam were carried out. The based-induced reaction resulted in cyclization to yield two epimers, the major product corresponding to the optical antipode of a (+)-meloscine derivative. The structures and relative configuration of the products were confirmed by X-ray diffraction analysis. Reaction of leuconolam and epi-leuconolam with various acids, molecular bromine, and hydrogen gave results that indicated that the structure of the alkaloid, previously assigned as epi-leuconolam, was incorrect. This was confirmed by an X-ray diffraction analysis, which revealed that epi-leuconolam is in fact 6,7-dehydroleuconoxine. Short partial syntheses of the diazaspiro indole alkaloid leuconoxine and the new leuconoxine-type alkaloids leuconodines A and F were carried out.
    Matched MeSH terms: Crystallography, X-Ray
  18. Kumar CS, Loh WS, Ooi CW, Quah CK, Fun HK
    Molecules, 2013 Sep 26;18(10):11996-2011.
    PMID: 24077177 DOI: 10.3390/molecules181011996
    A series of six novel heterocyclic chalcone analogues 4(a-f) has been synthesized by condensing 2-acetyl-5-chlorothiophene with benzaldehyde derivatives in methanol at room temperature using a catalytic amount of sodium hydroxide. The newly synthesized compounds are characterized by IR, mass spectra, elemental analysis and melting point. Subsequently; the structures of these compounds were determined using single crystal X-ray diffraction. All the synthesized compounds were screened for their antioxidant potential by employing various in vitro models such as DPPH free radical scavenging assay, ABTS radical scavenging assay, ferric reducing antioxidant power and cupric ion reducing antioxidant capacity. Results reflect the structural impact on the antioxidant ability of the compounds. The IC₀ values illustrate the mild to good antioxidant activities of the reported compounds. Among them, 4f with a p-methoxy substituent was found to be more potent as antioxidant agent.
    Matched MeSH terms: Crystallography, X-Ray
  19. Rebecca OP, Boyce AN, Somasundram C
    Molecules, 2012 Apr 17;17(4):4583-94.
    PMID: 22510607 DOI: 10.3390/molecules17044583
    Crystals isolated from Hylocereus polyrhizus were analyzed using four different approaches--X-ray Crystallography, High Performance Liquid Chromatography (HPLC), Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) and Nuclear Magnetic Resonance (NMR) and identified as myo-inositol. The X-ray crystallography analysis showed that the unit-cell parameters were: a = 6.6226 (3) Å, b = 12.0462 (5) Å, c = 18.8942 (8) Å, α = 90.00, β = 93.98, δ = 90.00. The purity of the crystals were checked using HPLC, whereupon a clean single peak was obtained at 4.8 min with a peak area of 41232 μV*s. The LC-MS/MS technique, which is highly sensitive and selective, was used to provide a comparison of the isolated crystals with a myo-inositol standard where the results gave an identical match for both precursor and product ions. NMR was employed to confirm the molecular structure and conformation of the crystals, and the results were in agreement with the earlier results in this study. The discovery of myo-inositol crystals in substantial amount in H. polyrhizus has thus far not been reported and this is an important finding which will increase the marketability and importance of H. polyrhizus as a crop with a wide array of health properties.
    Matched MeSH terms: Crystallography, X-Ray
  20. Al-Najjar BO, Wahab HA, Tengku Muhammad TS, Shu-Chien AC, Ahmad Noruddin NA, Taha MO
    Eur J Med Chem, 2011 Jun;46(6):2513-29.
    PMID: 21482446 DOI: 10.1016/j.ejmech.2011.03.040
    Peroxisome Proliferator-Activated Receptor γ (PPARγ) activators have drawn great recent attention in the clinical management of type 2 diabetes mellitus, prompting several attempts to discover and optimize new PPARγ activators. With this in mind, we explored the pharmacophoric space of PPARγ using seven diverse sets of activators. Subsequently, genetic algorithm and multiple linear regression analysis were employed to select an optimal combination of pharmacophoric models and 2D physicochemical descriptors capable of accessing self-consistent and predictive quantitative structure-activity relationship (QSAR) (r2(71)=0.80, F=270.3, r2LOO=0.73, r2PRESS against 17 external test inhibitors=0.67). Three orthogonal pharmacophores emerged in the QSAR equation and were validated by receiver operating characteristic (ROC) curves analysis. The models were then used to screen the national cancer institute (NCI) list of compounds. The highest-ranking hits were tested in vitro. The most potent hits illustrated EC50 values of 15 and 224 nM.
    Matched MeSH terms: Crystallography, X-Ray
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links