Displaying publications 61 - 80 of 383 in total

Abstract:
Sort:
  1. Yap CK, Pang BH
    Environ Monit Assess, 2011 Dec;183(1-4):23-39.
    PMID: 21340548 DOI: 10.1007/s10661-011-1903-3
    Surface sediments were collected from the north western aquatic area (13 intertidal sites and 5 river drainages) of Peninsular Malaysia, which were suspected to have received different anthropogenic sources. These sites included town areas, ports, fishing village, industrial areas, highway sides, jetties and some relatively unpolluted sites. The present study revealed that 4.79-32.91 μg/g dry weight for Cu, 15.85-61.56 μg/g dry weight for Pb, and 33.6-317.4 μg/g dry weight for Zn based on 13 intertidal surface sediments while those based on 5 river drainage surface sediments were 10.24-119.6 μg/g dry weight for Cu, 26.7-125.7 μg/g dry weight for Pb and 88.7-484.1 μg/g dry weight for Zn. In general, the metal levels in the drainage sediments are higher than in the intertidal sediments, suggesting dilution factor in the intertidal sediment and direct effluent from point sources in the drainage sediment. In particular, the total concentrations of Cu, Pb, and Zn for the sampling site at Kuala Kurau Town exceeded the Effect Range Median values for Cu, Pb, and Zn for assessments of sediment quality values for freshwater sediment as proposed by MacDonald et al. (Arch Environ Contam Toxicol 39:20-31, 2000), thus adverse biological effects would be observed above this level. Assessment using enrichment factor (using Fe as a normalizer) and geoaccumulation index showed that the three metals at Kuala Kurau Town and Juru Industry drainage were evidenced as having more enrichment and mostly due to non-natural sources. However, caution should be exercised that the interpretation can only become valid when the ratios, indices, and sediment quality values are combined. This is due to the fact that not all the established indices are applicable and, to a certain extent, some of them should be further revised and improved to suit a different metal for Malaysian sediment. Undoubtedly, sites near drainages at Kuala Kurau Town and Juru River Basin need greater attention to mitigate the heavy metal pollution in the future.
    Matched MeSH terms: Copper/analysis*
  2. Yin SH, Kuppuswamy R
    Forensic Sci Int, 2009 Jan 10;183(1-3):50-3.
    PMID: 19041202 DOI: 10.1016/j.forsciint.2008.10.009
    Chemical etching, which is the most sensitive method to recover obliterated serial numbers on metal surfaces, has been practised quite successfully in forensic science laboratories all over the world. A large number of etchants suitable for particular metal surfaces based on empirical studies is available in the literature. This article reviews the sensitivity and efficacy of some popular etchants for recovering obliterated marks on medium carbon steel (0.31% C with ferrite-pearlite microstructure) used in automobile parts. The experiments involved engraving these carbon steel plates with some alphanumeric characters using a computer controlled machine "Gravograph" and erasing them to several depths below the bottom of their engraving depth. Seven metallographic reagents of which most of them were copper containing compounds were chosen for etching. The erased plates were etched with every one of these etchants using swabbing method. The results have revealed that Fry's reagent comprising cupric chloride 90 g, hydrochloric acid 120 mL and water 100mL provided the necessary contrast and was concluded to be the most sensitive. The same reagent was recommended by earlier workers for revealing strain lines in steel surfaces. Earlier, another reagent containing 5 g copper sulphate, 60 mL water, 30 mL (conc.) ammonium hydroxide, and 60 mL (conc.) hydrochloric acid was proved to be more sensitive to restore erased marks on low carbon steel (0.1% C with ferrite-pearlite structure) [M.A.M. Zaili, R. Kuppuswamy, H. Harun, Restoration of engraved marks on steel surfaces by etching technique, Forensic Sci. Int. 171 (2007) 27-32]. Thus the sensitivity of the etching reagent on steel surfaces appeared to be dependent on the content of carbon in the steel.
    Matched MeSH terms: Copper; Copper Sulfate
  3. Yahaya YA, Mat Don M, Bhatia S
    J Hazard Mater, 2009 Jan 15;161(1):189-95.
    PMID: 18513859 DOI: 10.1016/j.jhazmat.2008.03.104
    The ability of white-rot fungus, Pycnoporus sanguineus to adsorb copper (II) ions from aqueous solution is investigated in a batch system. The live fungus cells were immobilized into Ca-alginate gel to study the influence of pH, initial metal ions concentration, biomass loading and temperature on the biosorption capacity. The optimum uptake of Cu (II) ions was observed at pH 5 with a value of 2.76mg/g. Biosorption equilibrium data were best described by Langmuir isotherm model followed by Redlich-Peterson and Freundlich models, respectively. The biosorption kinetics followed the pseudo-second order and intraparticle diffusion equations. The thermodynamic parameters enthalpy change (10.16kJ/mol) and entropy change (33.78J/molK) were determined from the biosorption equilibrium data. The FTIR analysis showed that OH, NH, CH, CO, COOH and CN groups were involved in the biosorption of Cu (II) ions onto immobilized cells of P. sanguineus. The immobilized cells of P. sanguineus were capable of removing Cu (II) ions from aqueous solution.
    Matched MeSH terms: Copper/metabolism*
  4. Ali MF, Heng LY, Ratnam W, Nais J, Ripin R
    Bull Environ Contam Toxicol, 2004 Sep;73(3):535-42.
    PMID: 15386176
    Matched MeSH terms: Copper*
  5. Ahmad Z, Zafar Q, Sulaiman K, Akram R, Karimov KS
    Sensors (Basel), 2013;13(3):3615-24.
    PMID: 23493124 DOI: 10.3390/s130303615
    In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O)-based humidity sensor. Silver thin films (thickness ~200 nm) were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD) technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ~31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved.
    Matched MeSH terms: Copper/chemistry
  6. Choo CK, Kong XY, Goh TL, Ngoh GC, Horri BA, Salamatinia B
    Carbohydr Polym, 2016 Mar 15;138:16-26.
    PMID: 26794733 DOI: 10.1016/j.carbpol.2015.11.060
    Development of new materials for different applications especially as bio-composites has received great attention. This study concentrates on development of a biopolymer based on chitosan (CT) and halloysite nanotubes (HNT) and evaluates the copper removal intake as a potential application of this bio-composite. In this study, CT/HNT beads were prepared by ultrasonic-assisted extrusion-dripping method for the first time. Two sources of HNTs (i.e. Dragonite and Matauri Bay) were added into a chitosan solution (2wt.%) at various loading fractions (25, 50, 75wt.%). The effect of ultrasound as a mixing device was also studied by varying the amplitude at constant frequency of 25%, 50% and 75%. Characteristics and physical properties of the prepared CT/HNT beads were also analyzed by SEM, FTIR, TGA and BET the results show that introducing HNT to chitosan increases the adsorption capacity toward copper ions; however HNT loading fraction above 50wt.% resulted in a decrease in adsorption capacity attributed to limited accessibility of the amino groups. The adsorption capacity of the CT/HNT beads prepared from Dragonite source had a larger adsorption capacity of 14.2mg/g as compared to that of Matauri Bay, 10.55mg/g. It was observed that the adsorption capacity of the beads toward copper ions decreased when the loading fraction of HNT is increased at constant ultrasound amplitude. The result of this study helps to understand the links between the characteristics and adsorption abilities of CT/HNT beads.
    Matched MeSH terms: Copper/chemistry*
  7. Mashitah, Zulfadhly Z, Bhatia S
    Artif Cells Blood Substit Immobil Biotechnol, 1999 Sep-Nov;27(5-6):429-33.
    PMID: 10595444
    The equilibrium sorption capacity of a macro-fungi, Pycnoporus sanguineus biomass was studied using a single-metal system comprising copper ions. The rate and extent for the removal of copper were subjected to environmental parameters such as pH, biomass loading, temperature, and contact time. Results showed that the uptake of copper increased as the pH increased. However, as the biomass loading increased, the amount of metal uptake decreased. Instead, temperature does not have a significant effect on the metal uptake, especially between 30 to 40 degrees C. A maximum adsorption of copper ions was also observed within 15 minutes of reaction time for the entire sample tested. Furthermore, pre-treatment with sodium bicarbonate and boiling water significantly improved the sorption capacity of copper by Pycnoporus sanguineus.
    Matched MeSH terms: Copper/metabolism*
  8. Lim YY, Liew LP
    J Colloid Interface Sci, 2002 Nov 15;255(2):425-7.
    PMID: 12505092
    The rate of autooxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) in the presence of micelles formed from mixing equal concentrations of [Cu(C(12)-tmed)Br(2)] (where C(12)-tmed is N,N,N'-trimethyl-N'-dodecylethylenediamine) and several amino acids has been investigated. It was found that the rate in air-saturated solution is very much dependent on pH, which affects the availability of copper(II) coordination site for the catechol and the degree of micellization. At a given pH, the rates in [Cu(C(12)-tmed)Br(2)] micellar media are greatly enhanced in the presence sodium halide.
    Matched MeSH terms: Copper*
  9. Glew S, Singh A
    Adv Contracept, 1989 Mar;5(1):51-3.
    PMID: 2782134
    A case is described of profuse uterine bleeding with a dislodged Multiload Cu 250 intrauterine device (IUD). Multiple blood transfusions were necessary, and ultimately, an emergency hysterectomy was performed.
    Matched MeSH terms: Intrauterine Devices, Copper/adverse effects*
  10. Raman S, Sivanesaratnam V
    Med J Malaysia, 1982 Mar;37(1):76-7.
    PMID: 6889674
    A case of perforation of the uterus by the Multiload CU250 Device is described. To date no perforation of the uterus by this device has been reported. The device was successfully removed under laparoscopic control.
    Matched MeSH terms: Intrauterine Devices, Copper/adverse effects*
  11. McCarthy T, Ramachandran L, Ratnam SS
    Adv Contracept, 1987 Dec;3(4):323-6.
    PMID: 3445800
    Eight-hundred patients recruited between September 1981 and December 1984 were admitted to a randomized prospective trial of the Nova T (NTCu200Ag) and Multiload 250 (MLCu250) IUDs. At the cut off date, 31 December 1986, 206 patients had completed the 4-year trial period, 379 had terminated before completion and 215 were in the fourth year of use. For the third and fourth years, the MLCu250 had a significantly lower accidental pregnancy rate (p less than 0.05).
    Matched MeSH terms: Intrauterine Devices, Copper/adverse effects*
  12. Wan Ngah WS, Kamari A, Koay YJ
    Int J Biol Macromol, 2004 Jun;34(3):155-61.
    PMID: 15225987
    The adsorption of Cu(II) ions from aqueous solution by chitosan and chitosan/PVA beads was studied in a batch adsorption system. Chitosan solution was blended with poly(vinyl alcohol) (PVA) in order to obtain sorbents that are insoluble in aqueous acidic and basic solution. The adsorption capacities and rates of Cu(II) ions onto chitosan and chitosan/PVA beads were evaluated. The Langmuir, Freundlich and BET adsorption models were applied to describe the isotherms and isotherm constants. Adsorption isothermal data could be well interpreted by the Langmuir model. The kinetic experimental data properly correlated with the second-order kinetic model, which indicates that the chemical sorption is the rate-limiting step. The Cu(II) ions can be removed from the chitosan and chitosan/PVA beads rapidly by treatment with an aqueous EDTA solution. Results also showed that chitosan and chitosan/PVA beads are favourable adsorbers.
    Matched MeSH terms: Copper/chemistry*
  13. Heng GT
    Med J Malaysia, 1979 Jun;33(4):352-4.
    PMID: 522748
    Matched MeSH terms: Intrauterine Devices, Copper/utilization*
  14. Zulkefeli M, Hisamatsu Y, Suzuki A, Miyazawa Y, Shiro M, Aoki S
    Chem Asian J, 2014 Oct;9(10):2831-41.
    PMID: 25080369 DOI: 10.1002/asia.201402513
    In our previous paper, we reported that a dimeric Zn(2+) complex with a 2,2'-bipyridyl linker (Zn2L(1)), cyanuric acid (CA), and a Cu(2+) ion automatically assemble in aqueous solution to form 4:4:4 complex 3, which selectively catalyzes the hydrolysis of mono(4-nitrophenyl)phosphate (MNP) at neutral pH. Herein, we report that the use of barbital (Bar) instead of CA for the self-assembly with Zn2L(1) and Cu(2+) induces 2:2:2 complexation of these components, and not the 4:4:4 complex, to form supramolecular complex 6 a, the structure and equilibrium characteristics of which were studied by analytical and physical measurements. The finding show that 6 a also accelerates the hydrolysis of MNP, similarly to 3. Moreover, inspired by the crystal structure of 6 a, we prepared barbital units that contain functional groups on their side chains in an attempt to produce supramolecular phosphatases that possess functional groups near the Cu2(μ-OH)2 catalytic core so as to mimic the catalytic center of alkaline phosphatase (AP).
    Matched MeSH terms: Copper/chemistry*
  15. Hisham S, Kadirgama K, Mohammed HA, Kumar A, Ramasamy D, Samykano M, et al.
    Molecules, 2020 Jun 28;25(13).
    PMID: 32605301 DOI: 10.3390/molecules25132975
    Friction and wear are the main factors in the failure of the piston in automobile engines. The objective of this work was to improve the tribological behaviour and lubricant properties using hybrid Cellulose Nanocrystal (CNC) and Copper (II) oxide nanoparticles blended with SAE 40 as a base fluid. The two-step method was used in the hybrid nanofluid preparation. Three different concentrations were prepared in a range of 0.1% to 0.5%. Kinematic viscosity and viscosity index were also identified. The friction and wear behavior were evaluated using a tribometer based on ASTM G181. The CNC-CuO nano lubricant shows a significant improvement in term of viscosity index by 44.3-47.12% while for friction, the coefficient of friction (COF) decreases by 1.5%, respectively, during high and low-speed loads (boundary regime), and 30.95% during a high-speed, and low load (mixed regime). The wear morphologies results also show that a smoother surface was obtained after using CNC-CuO nano lubricant compared to SAE 40.
    Matched MeSH terms: Copper/chemistry*
  16. Agi A, Junin R, Rasol M, Gbadamosi A, Gunaji R
    PLoS One, 2018;13(8):e0200595.
    PMID: 30089104 DOI: 10.1371/journal.pone.0200595
    Treated Rhizopora mucronata tannin (RMT) as a corrosion inhibitor for carbon steel and copper in oil and gas facilities was investigated. Corrosion rate of carbon-steel and copper in 3wt% NaCl solution by RMT was studied using chemical (weight loss method) and spectroscopic (FTIR) techniques at various temperatures in the ranges of 26-90°C. The weight loss data was compared to the electrochemical by the application of Faraday's law for the conversion of corrosion rate data from one system to another. The inhibitive efficiency of RMT was compared with commercial inhibitor sodium benzotriazole (BTA-S). The best concentration of RMT was 20% (w/v), increase in concentration of RMT decreased the corrosion rate and increased the inhibitive efficiency. Increase in temperature increased the corrosion rate and decreased the inhibitive efficiency but, the rate of corrosion was mild with RMT. The FTIR result shows the presence of hydroxyl group, aromatic group, esters and the substituted benzene group indicating the purity of the tannin. The trend of RMT was similar to that of BTA-S, but its inhibitive efficiency for carbon-steel was poor (6%) compared to RMT (59%). BTA-S was efficient for copper (76%) compared to RMT (74%) at 40% (w/v) and 20% (w/v) concentration respectively. RMT was efficient even at low concentration therefore, the use of RMT as a cost effective and environmentally friendly corrosion inhibiting agent for carbon steel and copper is herein proposed.
    Matched MeSH terms: Copper/chemistry
  17. Alhajj M, Aziz MSA, Huyop F, Salim AA, Sharma S, Ghoshal SK
    Biomater Adv, 2022 Nov;142:213136.
    PMID: 36206587 DOI: 10.1016/j.bioadv.2022.213136
    This paper reports the characterization and antibacterial performance evaluation of some spherical and stable crystalline silver (Ag)/copper (Cu) nanocomposites (Ag-CuNCs) prepared in deionized water (DIW) using pulse laser ablation in liquid (PLAL) method. The influence of various laser fluences (LFs) on the structural, morphological, optical and antibacterial properties of these NCs were determined. The UV-Vis absorbance of these NCs at 403 nm and 595 nm was gradually increased accompanied by a blue shift. XRD patterns disclosed the nucleation of highly crystalline Ag-CuNCs with their face centered cubic lattice structure. TEM images showed the existence of spherical NCs with size range of 3-20 nm and lattice fringe spacing of approximately 0.145 nm. EDX profiles of Ag-CuNCs indicated their high purity. The antibacterial effectiveness of the Ag-CuNCs was evaluated by the inhibition zone diameter (IZD) and optical density (OD600) tests against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. The proposed NCs revealed the IZD values in the range of 22-26 mm and 20-25 mm when tested against E. coli and S. aureus bacteria, respectively. The Ag-CuNCs prepared at LF of 14.15 J/cm2 revealed the best bactericidal activity. It is established that by controlling the laser fluence the bactericidal effectiveness of the Ag-CuNCs can be tuned.
    Matched MeSH terms: Copper/pharmacology
  18. Yousif E, Ahmed DS, Ahmed A, Abdallh M, Yusop RM, Mohammed SA
    Environ Sci Pollut Res Int, 2019 Sep;26(25):26381-26388.
    PMID: 31290046 DOI: 10.1007/s11356-019-05784-w
    A new Schiff base containing 1,2,4-triazole ring system (L) was synthesized and confirmed by 1HNMR, FTIR spectroscopy. The chemical modification of PVC with a new Schiff base (L) was synthesized to produce a homogenous blend (PVC-L). A homogenous blend (PVC-L) was added to copper chloride to produce PVC-L-Cu (II). The PVC films had been irradiated with ultraviolet light for a long period and confirmed by FTIR spectroscopy and weight loss; the surface morphology was inspected by scanning electron microscopy.
    Matched MeSH terms: Copper/chemistry
  19. Lim YY, Zaidi AMA, Miskon A
    Molecules, 2023 Mar 24;28(7).
    PMID: 37049685 DOI: 10.3390/molecules28072920
    Due to its built-up chemoresistance after prolonged usage, the demand for replacing platinum in metal-based drugs (MBD) is rising. The first MBD approved by the FDA for cancer therapy was cisplatin in 1978. Even after nearly four and a half decades of trials, there has been no significant improvement in osteosarcoma (OS) therapy. In fact, many MBD have been developed, but the chemoresistance problem raised by platinum remains unresolved. This motivates us to elucidate the possibilities of the copper and zinc (CuZn) combination to replace platinum in MBD. Thus, the anti-chemoresistance properties of CuZn and their physiological functions for OS therapy are highlighted. Herein, we summarise their chelators, main organic solvents, and ligand functions in their structures that are involved in anti-chemoresistance properties. Through this review, it is rational to discuss their ligands' roles as biosensors in drug delivery systems. Hereafter, an in-depth understanding of their redox and photoactive function relationships is provided. The disadvantage is that the other functions of biosensors cannot be elaborated on here. As a result, this review is being developed, which is expected to intensify OS drugs with higher cure rates. Nonetheless, this advancement intends to solve the major chemoresistance obstacle towards clinical efficacy.
    Matched MeSH terms: Copper/pharmacology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links