Displaying publications 61 - 80 of 104 in total

Abstract:
Sort:
  1. Ramli ES, Suhaimi F, Asri SF, Ahmad F, Soelaiman IN
    J. Bone Miner. Metab., 2013 May;31(3):262-73.
    PMID: 23274351 DOI: 10.1007/s00774-012-0413-x
    Rapid onset of bone loss is a frequent complication of systemic glucocorticoid therapy which may lead to fragility fractures. Glucocorticoid action in bone depends upon the activity of 11β-hydroxysteroid dehydrogenase type 1 enzyme (11β-HSD1). Regulations of 11β-HSD1 activity may protect the bone against bone loss due to excess glucocorticoids. Glycyrrhizic acid (GCA) is a potent inhibitor of 11β-HSD. Treatment with GCA led to significant reduction in bone resorption markers. In this study we determined the effect of GCA on 11β-HSD1 activity in bones of glucocorticoid-induced osteoporotic rats. Thirty-six male Sprague-Dawley rats (aged 3 months and weighing 250-300 g) were divided randomly into groups of ten. (1) G1, sham operated group; (2) G2, adrenalectomized rats administered with intramuscular dexamethasone 120 μg/kg/day and oral vehicle normal saline vehicle; and (3) G3, adrenalectomized rats administered with intramuscular dexamethasone 120 μg/kg/day and oral GCA 120 mg/kg/day The results showed that GCA reduced plasma corticosterone concentration. GCA also reduced serum concentration of the bone resorption marker, pyridinoline and induced 11β-HSD1 dehydrogenase activity in the bone. GCA improved bone structure, which contributed to stronger bone. Therefore, GCA has the potential to be used as an agent to protect the bone against glucocorticoid induced osteoporosis.
    Matched MeSH terms: Protective Agents/pharmacology; Protective Agents/therapeutic use*
  2. Subramaniyan V, Shaik S, Bag A, Manavalan G, Chandiran S
    Pak J Pharm Sci, 2018 Mar;31(2):509-516.
    PMID: 29618442
    To determine the ameliorative potential of the active fraction from different extracts of Rumex vesicarius against potassium dichromate and gentamicin induced nephrotoxicity in experimental rats and its possible mechanism of action. Both sex wistar rats were divided into 6 groups (n=6/group) were fed with a control, potassium dichromate and gentamicin supplemented with different extracts at the doses of 200 and 400mg/kg respectively. Oral administration of EERV offered a significant (p<0.01 and p<0.001) dose dependent protection against PD and GN induced nephrotoxicity. Potassium dichromate and gentamicin nephrotoxicity assessed in terms of body weight, kidney weight, creatinine, urea, uric acid, BUN, albumin and total protein. Thus the present study revealed that EERV phytochemical constituents play an important role in protection against kidney damage.
    Matched MeSH terms: Protective Agents/administration & dosage; Protective Agents/pharmacology
  3. Mariod AA, Salama SM
    ScientificWorldJournal, 2020;2020:6326452.
    PMID: 32549800 DOI: 10.1155/2020/6326452
    The current study has been conducted to evaluate the effect of different processing techniques on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity and the gastroprotective potential of Chenopodium quinoa red seeds in acute gastric injury induced by absolute ethanol in rats. Seven groups of female Sprague Dawley rats were assigned to normal and absolute ethanol (absolute EtOH) groups, given distilled water, reference control omeprazole (OMP, 20 mg/kg), pressure-cooked quinoa seeds (QP, 200 mg/kg), first stage-germinated quinoa seeds (QG, 200 mg/kg), Lactobacillus plantarum bacteria-fermented quinoa seeds (QB, 200 mg/kg), and Rhizopus oligosporus fungus-fermented quinoa seeds (QF, 200 mg/kg). One hour after treatment, all groups were given absolute ethanol, except for the normal control rats. All animals were sacrificed after an additional hour, and the stomach tissues were examined for histopathology of hematoxylin and eosin staining, immunohistochemistry of cyclooxygenase 2 (COX-2), and nitric oxide synthase (iNOS). Stomach homogenates were evaluated for oxidative stress parameters and prostaglandin E2 (PGE2). Gene expression was performed for gastric tumor necrosis factor alpha (TNF-α) and nuclear factor kappa of B cells (NF-kB). QB and QG recorded the highest DPPH scavengers compared to QF and QP. The gastroprotective potential of QB was comparable to that of OMP, followed by QF, then QG, and QP as confirmed by the histopathology, immunohistochemistry, and gene expression assessments. In conclusion, differently processed red quinoa seeds revealed variable antioxidant capacity and gastroprotective potential, while the bacterial fermented seeds (QB) showed the highest potential compared to the other processing techniques. These results might offer promising new therapy in the treatment of acute gastric injury.
    Matched MeSH terms: Protective Agents/pharmacology; Protective Agents/chemistry
  4. Khoo LW, Audrey Kow SF, Maulidiani M, Lee MT, Tan CP, Shaari K, et al.
    J Pharm Biomed Anal, 2018 Sep 05;158:438-450.
    PMID: 29957507 DOI: 10.1016/j.jpba.2018.06.038
    The present study sought to identify the key biomarkers and pathways involved in the induction of allergic sensitization to ovalbumin and to elucidate the potential anti-anaphylaxis property of Clinacanthus nutans (Burm. f.) Lindau water leaf extract, a Southeast Asia herb in an in vivo ovalbumin-induced active systemic anaphylaxis model evaluated by 1H-NMR metabolomics. The results revealed that carbohydrate metabolism (glucose, myo-inositol, galactarate) and lipid metabolism (glycerol, choline, sn-glycero-3-phosphocholine) are the key requisites for the induction of anaphylaxis reaction. Sensitized rats treated with 2000 mg/kg bw C. nutans extract before ovalbumin challenge showed a positive correlation with the normal group and was negatively related to the induced group. Further 1H-NMR analysis in complement with Kyoto Encyclopedia of Genes and Genomes (KEGG) reveals the protective effect of C. nutans extract against ovalbumin-induced anaphylaxis through the down-regulation of lipid metabolism (choline, sn-glycero-3-phosphocholine), carbohydrate and signal transduction system (glucose, myo-inositol, galactarate) and up-regulation of citrate cycle intermediates (citrate, 2-oxoglutarate, succinate), propanoate metabolism (1,2-propanediol), amino acid metabolism (betaine, N,N-dimethylglycine, methylguanidine, valine) and nucleotide metabolism (malonate, allantoin). In summary, this study reports for the first time, C. nutans water extract is a potential anti-anaphylactic agent and 1H-NMR metabolomics is a great alternative analytical tool to explicate the mechanism of action of anaphylaxis.
    Matched MeSH terms: Protective Agents/pharmacology*; Protective Agents/therapeutic use
  5. Hajrezaie M, Salehen N, Karimian H, Zahedifard M, Shams K, Al Batran R, et al.
    PLoS One, 2015;10(3):e0121529.
    PMID: 25811625 DOI: 10.1371/journal.pone.0121529
    BACKGROUND: Biochanin A notable bioactive compound which is found in so many traditional medicinal plant. In vivo study was conducted to assess the protective effect of biochanin A on the gastric wall of Spraguedawley rats` stomachs.

    METHODOLOGY: The experimental set included different animal groups. Specifically, four groups with gastric mucosal lesions were receiving either a) Ulcer control group treated with absolute ethanol (5 ml/kg), b) 20 mg/kg of omeprazole as reference group, c) 25 of biochanin A, d) 50 mg/kg of biochanin A. Histopathological sectioning followed by immunohistochemistry staining were undertaken to evaluate the influence of the different treatments on gastric wall mucosal layer. The gastric secretions were collected in the form of homogenate and exposed to superoxide dismutase (SOD) and nitric oxide enzyme (NO) and the level of malondialdehyde (MDA) and protein content were measured. Ulceration and patchy haemorrhage were clearly observed by light microscopy. The morphology of the gastric wall as confirmed by immunohistochemistry and fluorescent microscopic observations, exhibited sever deformity with notable thickness, oedematous and complete loss of the mucosal coverage however the biochanin-pretreated animals, similar to the omeprazole-pretreated animals, showed less damage compared to the ulcer control group. Moreover, up-regulation of Hsp70 protein and down-regulation of Bax protein were detected in the biochanin A pre-treated groups and the gastric glandular mucosa was positively stained with Periodic Acid Schiff (PAS) staining and the Leucocytes infiltration was commonly seen. Biochanin A displayed a great increase in SOD and NO levels and decreased the release of MDA.

    CONCLUSIONS: This gastroprotective effect of biochanin A could be attributed to the enhancement of cellular metabolic cycles perceived as an increase in the SOD, NO activity, and decrease in the level of MDA, and also decrease in level of Bax expression and increase the Hsp70 expression level.

    Matched MeSH terms: Protective Agents/pharmacology; Protective Agents/therapeutic use*
  6. Islam MT, Quispe C, Islam MA, Ali ES, Saha S, Asha UH, et al.
    Biomed Pharmacother, 2021 Aug;140:111732.
    PMID: 34130201 DOI: 10.1016/j.biopha.2021.111732
    Nerol, a monoterpene is evident to possess diverse biological activities, including antioxidant, anti-microbial, anti-spasmodic, anthelmintic, and anti-arrhythmias. This study aims to evaluate its hepatoprotective effect against paracetamol-induced liver toxicity in a rat model. Five groups of rats (n = 7) were orally treated (once daily) with 0.05% tween 80 dissolved in 0.9% NaCl solution (vehicle), paracetamol 640 mg/kg (negative control), 50 mg/kg silymarin (positive control), or nerol (50 and 100 mg/kg) for 14 days, followed by the hepatotoxicity induction using paracetamol (PCM). The blood samples and livers of the animals were collected and subjected to biochemical and microscopical analysis. The histological findings suggest that paracetamol caused lymphocyte infiltration and marked necrosis, whereas maintenance of the normal hepatic structural was observed in group pre-treated with silymarin and nerol. The rats pre-treated with nerol significantly and dose-dependently reduced the hepatotoxic markers in animals. Nerol at 100 mg/kg significantly reversed the paracetamol-induced altered situations, including the liver enzymes, plasma proteins, antioxidant enzymes and serum bilirubin, lipid peroxidation (LPO) and cholesterol [e.g., total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c)] levels in animals. Taken together, nerol exerted significant hepatoprotective activity in rats in a dose-dependent manner. PCM-induced toxicity and nerol induced hepatoprotective effects based on expression of inflammatory and apoptosis factors will be future line of work for establishing the precise mechanism of action of nerol in Wistar albino rats.
    Matched MeSH terms: Protective Agents/pharmacology; Protective Agents/therapeutic use*
  7. Rahim SM, Taha EM, Al-janabi MS, Al-douri BI, Simon KD, Mazlan AG
    PMID: 25435631
    BACKGROUND: Cymbopogon citratus (Poaceae) a tropical perennial herb plant that is widely cultivated to be eaten either fresh with food or dried in tea or soft drink has been reported to possess a number of medicinal and aromatic properties. This study aimed at evaluating the protective effects of C. citratus aqueous extract against liver injury induced by hydrogen peroxide (H2O2), in male rats.

    MATERIALS AND METHODS: Twenty-five rats were randomly divided into five different groups of five animals in each group; (1) Control. (2) Received H2O2 (0.5%) with drinking water. (3), and (4) received H2O2 and C. citratus (100 mg·kg(-1) b wt), vitamin C (250 mg·kg(-1) b wt) respectively. (5), was given C. citratus alone. The treatments were administered for 30 days. Blood samples were collected and serum was used for biochemical assay including liver enzymes activities, total protein, total bilirubin and malonaldehyde, glutathione in serum and liver homogenates. Liver was excised and routinely processed for histological examinations.

    RESULTS: C. citratus attenuated liver damage due to H2O2 administration as indicated by the significant reduction (p<0.05), in the elevated levels of ALT, AST, ALP, LDH, TB, and MDA in serum and liver homogenates; increase in TP and GSH levels in serum and liver homogenates; and improvement of liver histo-pathological changes. These effects of the extract were similar to that of vitamin C which used as antioxidant reference.

    CONCLUSION: C. citratus could effectively ameliorate H2O2-induced oxidative stress and prevent liver injury in male rats.

    Matched MeSH terms: Protective Agents/administration & dosage*
  8. Farooq SM, Boppana NB, Devarajan A, Asokan D, Sekaran SD, Shankar EM, et al.
    PLoS One, 2014;9(4):e93056.
    PMID: 24691130 DOI: 10.1371/journal.pone.0093056
    Oxalate toxicity is mediated through generation of reactive oxygen species (ROS) via a process that is partly dependent on mitochondrial dysfunction. Here, we investigated whether C-phycocyanin (CP) could protect against oxidative stress-mediated intracellular damage triggered by oxalate in MDCK cells. DCFDA, a fluorescence-based probe and hexanoyl-lysine adduct (HEL), an oxidative stress marker were used to investigate the effect of CP on oxalate-induced ROS production and membrane lipid peroxidation (LPO). The role of CP against oxalate-induced oxidative stress was studied by the evaluation of mitochondrial membrane potential by JC1 fluorescein staining, quantification of ATP synthesis and stress-induced MAP kinases (JNK/SAPK and ERK1/2). Our results revealed that oxalate-induced cells show markedly increased ROS levels and HEL protein expression that were significantly decreased following pre-treatment with CP. Further, JC1 staining showed that CP pre-treatment conferred significant protection from mitochondrial membrane permeability and increased ATP production in CP-treated cells than oxalate-alone-treated cells. In addition, CP treated cells significantly decreased the expression of phosphorylated JNK/SAPK and ERK1/2 as compared to oxalate-alone-treated cells. We concluded that CP could be used as a potential free radical-scavenging therapeutic strategy against oxidative stress-associated diseases including urolithiasis.
    Matched MeSH terms: Protective Agents/pharmacology
  9. Koriem KM, Arbid MS, El-Gendy NF
    Toxicol. Mech. Methods, 2010 Nov;20(9):579-86.
    PMID: 20883155 DOI: 10.3109/15376516.2010.518171
    The protective role of Tropaelum majus (T.majus) methyl alcohol extract and vitamin E in the case of toxic effect induced by diethyl maleate was evaluated. Forty-two male albino rats were divided into seven groups of six rats each for 15 days. Group 1: normal control group. Group 2: taken daily oral dose of paraffin oil (0.25ml/100g b.wt rat). Group 3: received daily oral dose of vitamin E (100mg/kg b.wt rat). Group 4: taken daily oral dose of 10% of the LD50 of T.majus methyl alcohol extract. Groups 5–7: injected intra-peritoneally with diethyl maleate (5 μl/100g b.wt rat) but groups 6 and 7 received a daily oral dose of either vitamin E or 10% of the LD50 of T.majus methyl alcohol extract 1h prior to diethyl maleate injection. The present results revealed that diethyl maleate induced serum aspartate and alanine aminotransferases enzymes activities decreased in serum, but their activities in the hepatic tissue showed an increase. Glutathione and glucose-6-phosphate dehydrogenase levels showed a decrease, but thiobarbituric acid reactive substances level showed an increase in both serum and liver tissue. Serum and liver proteins decreased in serum and liver tissue. A significant decrease in blood parameters (hemoglobin, hematocrit, as well as red and white blood cells) and serum glucose occurred. Histopathological results showed that diethyl maleate induced a hoop of edema in the hepatic periportal area; while T.majus methyl alcohol extract or vitamin E prior to diethyl maleate injection shift blood and liver toxicity induced by diethyl maleate towards normal values and preserved hepatic lobular architecture. In conclusion, pre-treatment with either T.majus methyl alcohol extract or vitamin E provide protection against blood and liver toxicity induced by diethyl maleate in rats, these results were confirmed by histological examinations.
    Matched MeSH terms: Protective Agents/pharmacology*
  10. Grace-Lynn C, Chen Y, Latha LY, Kanwar JR, Jothy SL, Vijayarathna S, et al.
    Molecules, 2012 Nov 23;17(12):13937-47.
    PMID: 23178309 DOI: 10.3390/molecules171213937
    The aim of the present study was to evaluate the hepatoprotective activity of lantadene A against acetaminophen-induced liver toxicity in mice was studied. Activity was measured by monitoring the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and bilirubin, along with histo-pathological analysis. Silymarin was used as positive control. A bimodal pattern of behavioural toxicity was exhibited by the lantadene A-treated group at the beginning of the treatment. However, treatment with lantadene A and silymarin resulted in an increase in the liver weight compared with the acetaminophen treated group. The results of the acetaminophen-induced liver toxicity experiments showed that mice treated with lantadene A (500 mg/kg) showed a significant decrease in the activity of ALT, AST and ALP and the level of bilirubin, which were all elevated in the acetaminophen treated group (p < 0.05). Histological studies supported the biochemical findings and a maximum improvement in the histoarchitecture was seen. The lantadene A-treated group showed remarkable protective effects against histopathological alterations, with comparable results to the silymarin treated group. The current study confirmed the hepatoprotective effects of lantadene A against the model hepatotoxicant acetaminophen, which is likely related to its potent antioxidative activity.
    Matched MeSH terms: Protective Agents/administration & dosage
  11. Ahmad TA, Jubri Z, Rajab NF, Rahim KA, Yusof YA, Makpol S
    Molecules, 2013 Feb 11;18(2):2200-11.
    PMID: 23434870 DOI: 10.3390/molecules18022200
    The present study was designed to determine the radioprotective effects of Malaysian Gelam honey on gene expression and enzyme activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) of human diploid fibroblasts (HDFs) subjected to gamma-irradiation. Six groups of HDFs were studied: untreated control, irradiated HDFs, Gelam honey-treated HDFs and HDF treated with Gelam honey pre-, during- and post-irradiation. HDFs were treated with 6 mg/mL of sterilized Gelam honey (w/v) for 24 h and exposed to 1 Gray (Gy) of gamma rays at the dose rate of 0.25 Gy/min. Gamma-irradiation was shown to down-regulate SOD1, SOD2, CAT and GPx1 gene expressions (p < 0.05). Conversely, HDFs treated with Gelam honey alone showed up-regulation of all genes studied. Similarly, SOD, CAT and GPx enzyme activities in HDFs decreased with gamma-irradiation and increased when cells were treated with Gelam honey (p < 0.05). Furthermore, of the three different stages of study treatment, pre-treatment with Gelam honey caused up-regulation of SOD1, SOD2 and CAT genes expression and increased the activity of SOD and CAT. As a conclusion, Gelam honey modulates the expression of antioxidant enzymes at gene and protein levels in irradiated HDFs indicating its potential as a radioprotectant agent.
    Matched MeSH terms: Radiation-Protective Agents/pharmacology*
  12. Jothy SL, Saito T, Kanwar JR, Chen Y, Aziz A, Yin-Hui L, et al.
    Phys Med, 2016 Jan;32(1):150-61.
    PMID: 26526749 DOI: 10.1016/j.ejmp.2015.10.090
    The radioprotective effect of Polyalthia longifolia was studied in mice. P. longifolia treatment showed improvement in mice survival compared to 100% mortality in the irradiated mice. Significant increases in hemoglobin concentration, and red blood cell, white blood cell and platelet counts were observed in the animals pretreated with leaf extract. Pre-irradiation administration of P. longifolia leaf extract also increased the CFU counts of the spleen colony and increased the relative spleen size. A dose-dependent decrease in lipid peroxidation levels was observed in the animals pretreated with P. longifolia. However, although the animals pretreated with P. longifolia exhibited a significant increase in superoxide dismutase and catalase activity, the values remained below normal in both liver and the intestine. Pre-irradiation administration of P. longifolia also resulted in the regeneration of the mucosal crypts and villi of the intestine. Moreover, pretreatment with P. longifolia leaf extract also showed restoration of the normal liver cell structure and a significant reduction in the elevated levels of ALT, AST and bilirubin. These results suggested the radioprotective ability of P. longifolia leaf extract, which is significant for future investigation for human applications in developing efficient, economically viable, non-toxic natural and clinically acceptable novel radioprotectors.
    Matched MeSH terms: Radiation-Protective Agents/chemistry*
  13. Rofiee MS, Yusof MI, Abdul Hisam EE, Bannur Z, Zakaria ZA, Somchit MN, et al.
    J Ethnopharmacol, 2015 May 26;166:109-18.
    PMID: 25792013 DOI: 10.1016/j.jep.2015.03.016
    Muntingia calabura L. has been used in Southeast Asia and tropical America as antipyretic, antiseptic, analgesic, antispasmodic and liver tonic. This study aims to determine the acute toxicity and the metabolic pathways involved in the hepatoprotective mechanism of M. calabura.
    Matched MeSH terms: Protective Agents/pharmacology*
  14. Aznan AS, Lee KL, Low CF, Iberahim NA, Wan Ibrahim WN, Musa N, et al.
    Fish Shellfish Immunol, 2018 Jul;78:338-345.
    PMID: 29684603 DOI: 10.1016/j.fsi.2018.04.033
    Outbreaks of edwardsiellosis have severe impact on the aquaculture production of African catfish Clarias gariepinus. In this study, feed supplemented with apple mangrove Sonneratia caseolaris extract was evaluated for its protective effect against Edwardsiella tarda infection in African catfish. Results showed an increase in growth performance and higher survival rate in the treatment groups in a dose dependent manner. Haematological analyses showed an increase in white blood cell count in the treatment groups. Histopathological analysis revealed degenerative changes and regeneration of liver tissue architecture in both the control and treatment groups. However, the presence of inflammatory cells was found exclusively in the kidney of T3 treatment group that was supplemented with the highest dose of extract at 3.17 mg/ml, which inferred the activation of immune response in the fish. Contrast to the deteriorative alteration observed in the kidney of the control group due to E. tarda infection, treatment group exhibited tissue regeneration and well-defined kidney tissue architecture at 3 dpi. Taken together, these results demonstrated that supplementation with the methanol extract of S. caseolaris possesses protective effect in African catfish against the infection of E. tarda.
    Matched MeSH terms: Protective Agents/pharmacology*
  15. Jafri AJA, Agarwal R, Iezhitsa I, Agarwal P, Ismail NM
    Amino Acids, 2019 Apr;51(4):641-646.
    PMID: 30656415 DOI: 10.1007/s00726-019-02696-4
    This study aimed to evaluate effect of TAU on NMDA-induced changes in retinal redox status, retinal cell apoptosis and retinal morphology in Sprague-Dawley rats. Taurine was injected intravitreally as pre-, co- or post-treatment with NMDA and 7 days post-treatment retinae were processed for estimation of oxidative stress, retinal morphology using H&E staining and retinal cell apoptosis using TUNEL staining. Treatment with TAU, particularly pre-treatment, significantly increased retinal glutathione, superoxide dismutase and catalase levels compared to NMDA-treated rats; whereas, the levels of malondialdehyde reduced significantly. Reduction in retinal oxidative stress in TAU pre-treated group was associated with significantly greater fractional thickness of ganglion cell layer within inner retina and retinal cell density in inner retina. TUNEL staining showed significantly reduced apoptotic cell count in TAU pre-treated group compared to NMDA group. It could be concluded that TAU protects against NMDA-induced retinal injury in rats by reducing retinal oxidative stress.
    Matched MeSH terms: Protective Agents/pharmacology*
  16. Nna VU, Usman UZ, Ofutet EO, Owu DU
    Food Chem Toxicol, 2017 Apr;102:143-155.
    PMID: 28229914 DOI: 10.1016/j.fct.2017.02.010
    This study examined the possible protective effect of quercetin(QE) on cadmium chloride (CdCl2) - induced reproductive toxicity in female rats. Cadmium (Cd) accumulated in the uterus and ovaries of rats, decreased antioxidants [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione (GSH)], and raised the concentrations of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in the uterus and ovaries of rats. Serum concentrations of estradiol, progesterone, follicle stimulating hormone and luteinizing hormone decreased significantly after CdCl2 administration. Caspase-3 activity significantly increased in the ovaries, with an increase in Bax and a decrease in Bcl-2 protein expressions after CdCl2 treatment. Histopathology of the ovaries revealed significant decrease in follicle number, while the uterus showed cyst-like endometrial glands. All three models of QE treatment [pre-treatment (QE + CdCl2), post-treatment (CdCl2+QE), simultaneous treatment (CdCl2/QE)] decreased Cd accumulation, MDA, H2O2, and increased SOD, CAT and GPx activities in the uterus and ovaries, decreased apoptosis of follicular cells, and increased serum reproductive hormones. However, the QE pre-treated model offered better protection against CdCl2 relative to the other two models. These results suggest that, QE exerts multi-mechanistic protective effects against cadmium toxicity attributable to its antioxidant and anti-apoptotic actions.
    Matched MeSH terms: Protective Agents/pharmacology
  17. Adenan MNH, Yazan LS, Christianus A, Md Hashim NF, Mohd Noor S, Shamsudin S, et al.
    Molecules, 2021 Mar 12;26(6).
    PMID: 33809054 DOI: 10.3390/molecules26061557
    Large doses of ionizing radiation can damage human tissues. Therefore, there is a need to investigate the radiation effects as well as identify effective and non-toxic radioprotectors. This study evaluated the radioprotective effects of Kelulut honey (KH) from stingless bee (Trigona sp.) on zebrafish (Danio rerio) embryos. Viable zebrafish embryos at 24 hpf were dechorionated and divided into four groups, namely untreated and non-irradiated, untreated and irradiated, KH pre-treatment and amifostine pre-treatment. The embryos were first treated with KH (8 mg/mL) or amifostine (4 mM) before irradiation at doses of 11 Gy to 20 Gy using gamma ray source, caesium-137 (137Cs). Lethality and abnormality analysis were performed on all of the embryos in the study. Immunohistochemistry assay was also performed using selected proteins, namely γ-H2AX and caspase-3, to investigate DNA damages and incidences of apoptosis. KH was found to reduce coagulation effects at up to 20 Gy in the lethality analysis. The embryos developed combinations of abnormality, namely microphthalmia (M), body curvature and microphthalmia (BM), body curvature with microphthalmia and microcephaly (BMC), microphthalmia and pericardial oedema (MO), pericardial oedema (O), microphthalmia with microcephaly and pericardial oedema (MCO) and all of the abnormalities (AA). There were more abnormalities developed from 24 to 72 h (h) post-irradiation in all groups. At 96 h post-irradiation, KH was identified to reduce body curvature effect in the irradiated embryos (up to 16 Gy). γ-H2AX and caspase-3 intensities in the embryos pre-treated with KH were also found to be lower than the untreated group at gamma irradiation doses of 11 Gy to 20 Gy and 11 Gy to 19 Gy, respectively. KH was proven to increase the survival rate of zebrafish embryos and exhibited protection against organ-specific abnormality. KH was also found to possess cellular protective mechanism by reducing DNA damage and apoptosis proteins expression.
    Matched MeSH terms: Radiation-Protective Agents/pharmacology*
  18. Nna VU, Bakar ABA, Ahmad A, Mohamed M
    Arch Physiol Biochem, 2020 Dec;126(5):377-388.
    PMID: 30513216 DOI: 10.1080/13813455.2018.1543329
    Context: Metformin's effect on glycaemic control is well documented, but its effect on diabetes-induced testicular impairment has been scarcely reported.Objective: To investigate the effects of metformin on testicular oxidative stress, inflammation, and apoptosis, which largely contribute to fertility decline in diabetic state.Methods: Male Sprague-Dawley rats were divided into 3 groups (n = 6/group) namely: normal control (NC), diabetic control (DC), and metformin (300 mg/kg b.w./d)-treated diabetic groups. Metformin was administrated for 4 weeks.Results: Decreased mRNA expressions and activities of antioxidant enzymes were seen in the testes of DC group. mRNA and protein expressions of pro-inflammatory and pro-apoptotic markers increased, while interleukin-10 and proliferating cell nuclear antigen (PCNA) decreased in the testes of DC group. Treatment with metformin up-regulated antioxidant enzymes, down-regulated inflammation, and apoptosis and increased PCNA immunoexpression in the testes.Conclusions: Metformin protects the testes from diabetes-induced impairment and may improve male reproductive health in diabetic state.
    Matched MeSH terms: Protective Agents/pharmacology*
  19. Nna VU, Bakar ABA, Mohamed M
    Life Sci, 2018 Oct 15;211:40-50.
    PMID: 30205096 DOI: 10.1016/j.lfs.2018.09.018
    AIMS: Hepatic oxidative stress and weak antioxidant defence system resulting in hepatic lesion, has been reported in diabetic rats. The present study investigated the possible hepatoprotective effects of Malaysian propolis (MP) in diabetic rats, on the background that MP has been reported to have anti-hyperglycemic, antioxidant and anti-inflammatory effects.

    MATERIALS AND METHODS: Sprague-Dawley rats were randomly divided into 5 groups, namely: normal control (NC), diabetic control (DC), diabetic on 300 mg/kg b.w. MP, diabetic on 300 mg/kg b.w. metformin, and diabetic on MP and metformin combined therapy. Treatment was done orally for 4 weeks, and NC and DC groups received distilled water as vehicle.

    KEY FINDINGS: Results showed increased fasting blood glucose and serum markers of hepatic lesion (aspartate aminotransferase, alkaline phosphatase, alanine aminotransferase and gamma-glutamyl transferase), increased hepatic lactate dehydrogenase activity, decreased hepatic superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase activities, increased immunoexpressions of nuclear factor kappa B, tumor necrosis factor-α, interleukin(IL)-1β and caspase-3, and decreased immunoexpressions of IL-10 and proliferating cell nuclear antigen in the liver of DC group. Histopathology of the liver revealed numerous hepatocytes with pyknotic nuclei and inflammatory infiltration, while periodic acid-schiff staining decreased in the liver of DC group. Treatment with MP attenuated these negative effects and was comparable to metformin. Furthermore, these effects were better attenuated in the combined therapy-treated diabetic rats.

    SIGNIFICANCE: Malaysian propolis attenuates hepatic lesion in DM and exerts a synergistic protective effect with the anti-hyperglycemic medication, metformin.

    Matched MeSH terms: Protective Agents/therapeutic use*
  20. Zaid SSM, Othman S, Kassim NM
    J Ovarian Res, 2018 Nov 26;11(1):99.
    PMID: 30477542 DOI: 10.1186/s13048-018-0466-0
    Ficus deltoidea is one of the well-known medicinal plants in Malaysia that is traditionally used by the Malay community to treat various ailments and for maintenance of female reproductive health. The objective of this study is to evaluate the potential protective roles of Ficus deltoidea against BPA-induced toxicity of the pituitary-ovarian axis in pre-pubertal female rats. In this study, four groups of pre-pubertal female Sprague Dawley rats were administered with the followings by oral gavage for a period of six weeks: NC (negative control- treated with vehicle), PC (positive control-treated with BPA at 10 mg/kg/BW), F (treated with Ficus deltoidea at 100 mg/kg/BW, then exposed to BPA at 10 mg/kg/BW) and FC (Ficus deltoidea control - treated with Ficus deltoidea at 100 mg/kg/BW). Daily vaginal smear, ovarian follicular development as well as gonadotropin and sexual-steroid hormone levels were determined. The findings showed that Ficus deltoidea demonstrated preventive role against BPA-induced toxicity on the ovaries. This was evident by the increased percentage of rats with normal estrous cycle, qualitatively reduced number of atretic follicles (as observed in histopathological examination) and normalization of the gonadotropins hormone (FSH) and sexual steroid hormone (progesterone) levels. In conclusion, Ficus deltoidea has the capability to prevent the effects of BPA toxicity in the hypothalamus-pituitary-gonadal axis of prepubertal female reproductive system, possibly due to its variety of phytochemical properties. Therefore, these findings strongly support the traditional belief that this medicinal plant is beneficial as daily dietary supplement for the maintenance of female reproductive health.
    Matched MeSH terms: Protective Agents/therapeutic use*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links