Methods: One hundred and eighty-eight healthy subjects aged between 18 and 50 years with varying oral hygiene status who gave consent to participate were included in this cross-sectional study. The subjects were recruited from primary oral health care of MAHSA University. Oral hygiene of all the participants was measured using Oral Hygiene Index-Simplified (OHI-S). Stimulated saliva collected using paraffin wax was analyzed for salivary statherin, aPRP, and calcium. The relationship between salivary statherin, aPRP, and calcium levels with OHI-S was assessed using Spearman's Rank correlation coefficient; the strength of relationship was assessed by multiple linear regression analysis.
Results: The study found a weak positive correlation (r = 0.179, p = 0.014) between salivary statherin and OHI-S; weak negative correlation (r = -0.187, p = 0.010) between salivary aPRP and OHI-S; and moderate negative correlation between salivary statherin and salivary aPRP levels (r = -0.50, p
METHODS: Surgical samples from seven patients with a total of 17 sequential biopsies were retrieved for the study of p53 gene expression using immunohistochemical stain, and gene status by PCR-SSCP for exons 5-8. The tumours were graded according to the WHO classification criteria. P53 was distinctly over-expressed in five transformed higher grade biopsies, and all except one showed electrophoretic mobility shift in PCR-SSCP analysis. Sequencing analysis revealed single nucleotide substitutions in three of four of these high-grade transformed cases with band shift (75%), whereas some other studies reported a lower frequency of 25-30%, and mobility shift result was found to correlate with P53 expression. Lower grade tumours without P53 over-expression did not demonstrate band shift, and sequencing analysis did not reveal mutations.
CONCLUSIONS: We demonstrated the feasibility of adopting PCR-SSCP for screening of p53 mutations in archival tissue samples in this study, and there is a strong correlation of p53 gene over-expression and mutation events in high-grade transformed tumours.
METHODS: Patients with oral epithelial dysplasia at one hospital were selected as the 'training set' (n = 56) whilst those at another hospital were selected for the 'test set' (n = 66). RNA was extracted from formalin-fixed paraffin-embedded (FFPE) diagnostic biopsies and analysed using the NanoString nCounter platform. A targeted panel of 42 genes selected on their association with oral carcinogenesis was used to develop a prognostic gene signature. Following data normalisation, uni- and multivariable analysis, as well as prognostic modelling, were employed to develop and validate the gene signature.
RESULTS: A prognostic classifier composed of 11 genes was developed using the training set. The multivariable prognostic model was used to predict patient risk scores in the test set. The prognostic gene signature was an independent predictor of malignant transformation when assessed in the test set, with the high-risk group showing worse prognosis [Hazard ratio = 12.65, p = 0.0003].
CONCLUSIONS: This study demonstrates proof of principle that RNA extracted from FFPE diagnostic biopsies of OPMD, when analysed on the NanoString nCounter platform, can be used to generate a molecular classifier that stratifies the risk of malignant transformation with promising clinical utility.
METHODS: ALK gene rearrangement was detected by immunostaining of ALK protein and fluorescence in situ hybridisation (FISH) targeting at the 2p23 region.
RESULTS: The expression of ALK protein was detected in 24/34 (71%) of the cases, and it was significantly higher in childhood cases (100%) when compared to adult cases (47%). The analyses by FISH were consistent with the results from immunostaining of ALK protein, but the analyses were only successful in 15/34 (44%) cases. FISH analyses detected extra copies of ALK gene in three cases, including one case that expressed ALK protein and showed 2p23 rearrangement.
CONCLUSIONS: The current series revealed a high frequency of ALK gene rearrangement, especially in the children. Immunostaining of ALK protein is a reliable indication of ALK gene rearrangement, and is superior to FISH. However, FISH analysis is useful in detecting other genetic aberrations that are not related to ALK gene rearrangement.
METHODS: Fifty follicular lymphoma cases were retrieved from the files of the Department of Pathology, University of Malaya Medical Centre (UMMC). Nested PCR amplification of MBR/JH and mcr/JH was performed in these cases, and those cases that did not demonstrate the translocation were subjected to FISH analysis.
RESULTS: Thirty cases (60%) had t(14;18) translocation detected by PCR, 25 (50%) had breakpoint with MBR and five (10%) involved mcr. Twenty cases without detectable t(14;18) translocation by PCR were analysed by FISH. Eleven cases were successfully probed, and four of them showed positive translocation signal.
CONCLUSIONS: The combination of PCR and FISH analysis on paraffin tissue sections for the detection of t(14;18) translocation increases the sensitivity of detection from 60 to 68%. Problems encountered in our FISH analysis on tissue sections impose certain limitations in using this technique for retrospective screening of large number of samples. Therefore, we suggested the application of PCR as the first screening tool on retrospective archival materials, followed by FISH on those PCR-negative cases.
(: MVD) is the quantification method of various aspects of tumor vasculature that indicates angiogenic activity. This study aims to analyze the correlation between MVD to the expression of VEGFRs on breast cancer tissue.
Materials and Method: A total of 60 N-methyl-N-nitrosourea (MNU)-induced breast carcinomas in rats were suppressed by using antiangiogenic drugs. The rats were then sacrificed, and the tumor was fixed in 10% formalin, paraffin embedded, and immunohistochemistry stained using VEGFRs and CD34.
Result: One-way ANOVA test showed a significant difference in all markers that have been used (P < 0.05) on MNU-breast tumor treated with rapamycin (M= 90.1664, SD= 7.4487), PF4 (M= 93.7946, SD= 7.1303) and rapamycin + PF4 (M= 93.6990, SD= 1.8432). We obtained a significant reduction of MVD count on breast carcinoma for rapamycin group (M= 25.6786, SD= 9.7075) and rapamycin + PF4 group (M= 30.5250, SD= 13.6928) while PF4 group (M=47.7985, SD=4.8892) showed slightly increase compared to control (M= 45.1875, SD= 4.4786). There was a moderately strong, positive correlation between angiogenic markers; Flt-1 (r= 0.544, n=60, P < 0.005) and Flt-4 (r= 0.555, n= 60, P < 0.005) while Flk-1 (r= 0.797, n= 60, P < 0.005) showed a strong, positive correlation with MVD.
Conclusion: MVD was strongly correlated to the VEGFRs expression on breast carcinoma.