Displaying publications 61 - 80 of 128 in total

Abstract:
Sort:
  1. Hassan T, de Santi C, Mooney C, McElvaney NG, Greene CM
    Sci Rep, 2017 10 23;7(1):13803.
    PMID: 29062067 DOI: 10.1038/s41598-017-14310-2
    Alpha-1 antitrypsin (AAT) augmentation therapy involves infusion of plasma-purified AAT to AAT deficient individuals. Whether treatment affects microRNA expression has not been investigated. This study's objectives were to evaluate the effect of AAT augmentation therapy on altered miRNA expression in monocytes and investigate the mechanism. Monocytes were isolated from non-AAT deficient (MM) and AAT deficient (ZZ) individuals, and ZZs receiving AAT. mRNA (qRT-PCR, microarray), miRNA (miRNA profiling, qRT-PCR), and protein (western blotting) analyses were performed. Twenty one miRNAs were differentially expressed 3-fold between ZZs and MMs. miRNA validation studies demonstrated that in ZZ monocytes receiving AAT levels of miR-199a-5p, miR-598 and miR-320a, which are predicted to be regulated by NFκB, were restored to levels similar to MMs. Validated targets co-regulated by these miRNAs were reciprocally increased in ZZs receiving AAT in vivo and in vitro. Expression of these miRNAs could be increased in ZZ monocytes treated ex vivo with an NFκB agonist and decreased by NFκB inhibition. p50 and p65 mRNA and protein were significantly lower in ZZs receiving AAT than untreated ZZs. AAT augmentation therapy inhibits NFκB and decreases miR-199a-5p, miR-598 and miR-320a in ZZ monocytes. These NFκB-inhibitory properties may contribute to the anti-inflammatory effects of AAT augmentation therapy.
    Matched MeSH terms: NF-kappa B/metabolism
  2. Syahida A, Israf DA, Permana D, Lajis NH, Khozirah S, Afiza AW, et al.
    Immunol Cell Biol, 2006 Jun;84(3):250-8.
    PMID: 16509831
    Many plant-derived natural compounds have been reported previously to inhibit the production of important pro-inflammatory mediators such as nitric oxide, prostaglandin E2, TNF-alpha and reactive oxygen species by suppressing inducible enzyme expression via inhibition of the mitogen-activated protein kinase pathway and nuclear translocation of critical transcription factors. This study evaluates the effects of atrovirinone [2-(1-methoxycarbonyl-4,6-dihydroxyphenoxy)-3-methoxy-5,6-di-(3-methyl-2-butenyl)-1,4-benzoquinone)], a benzoquinone that we have previously isolated from Garcinia atroviridis, on two cellular systems that are repeatedly used in the analysis of anti-inflammatory bioactive compounds, namely, RAW 264.7 macrophage cells and whole blood. Atrovirinone inhibited the production of both nitric oxide and prostaglandin E2 from LPS-induced and IFN-gamma-induced RAW 264.7 cells and whole blood, with inhibitory concentration (IC)50 values of 4.62 +/- 0.65 and 9.33 +/- 1.47 micromol/L, respectively. Analysis of thromboxane B2 (TXB2) secretion from whole blood stimulated by either the cyclooxygenase (COX)-1 or the COX-2 pathway showed that atrovirinone inhibits the generation of TXB2 by both pathways, with IC50 values of 7.41 +/- 0.92 and 2.10 +/- 0.48 micromol/L, respectively. Analysis of IC50 ratios showed that atrovirinone was more COX-2 selective in its inhibition of TXB2, with a ratio of 0.32. Atrovirinone also inhibited the generation of intracellular reactive oxygen species and the secretion of TNF-alpha from RAW 264.7 cells in a dose-responsive manner, with IC50 values of 5.99 +/- 0.62 and 11.56 +/- 0.04 micromol/L, respectively. Lipoxygenase activity was also moderately inhibited by atrovirinone. Our results suggest that atrovirinone acts on important pro-inflammatory mediators possibly by the inhibition of the nuclear factor-kappaB pathway and also by the inhibition of the COX/lipoxygenase enzyme activity.
    Matched MeSH terms: NF-kappa B/metabolism
  3. Malik R, Paudel KR, Manandhar B, De Rubis G, Shen J, Mujwar S, et al.
    Pathol Res Pract, 2023 Nov;251:154895.
    PMID: 37879146 DOI: 10.1016/j.prp.2023.154895
    PURPOSE: Oxidative stress and inflammation are key pathophysiological features of chronic respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD). Agarwood oil obtained from Aquilaria trees has promising antioxidant and anti-inflammatory activities. However, its clinical application is hampered by poor solubility. A viable approach to overcome this involves formulation of oily constituents into emulsions. Here, we have investigated the antioxidant and anti-inflammatory potential of an agarwood oil-based nanoemulsion (DE'RAAQSIN) against lipopolysaccharide (LPS)-induced RAW264.7 mouse macrophages in vitro.

    METHODS: The antioxidant and anti-inflammatory activity of DE'RAAQSIN was assessed by measuring the levels of ROS and nitric oxide (NO) produced, using the DCF-DA assay and the Griess reagent assay, respectively. The molecular pathways activated by DE'RAAQSIN were investigated via qPCR.

    RESULTS: LPS stimulation of RAW264.7 cells increased the production of nitric oxide (NO) and ROS and resulted in the overexpression of the inducible nitric oxide synthase (iNOS) gene. Furthermore, LPS induced the upregulation of the expression of key proinflammatory genes (IL-6, TNF-α, IL-1β, and CXCL1) and of the antioxidant gene heme oxygenase-1 (HO-1). DE'RAAQSIN demonstrated potent antioxidant and anti-inflammatory activity by significantly reducing the levels of ROS and of secreted NO, simultaneously counteracting the LPS-induced overexpression of iNOS, IL-6, TNF-α, IL-1β, and HO-1. These findings were corroborated by in silico activity prediction and physicochemical analysis of the main agarwood oil components.

    CONCLUSIONS: We propose DE'RAAQSIN as a promising alternative managing inflammatory disorders, opening the platform for further studies aimed at understanding the effectiveness of DE'RAAQSIN.

    Matched MeSH terms: NF-kappa B/metabolism
  4. Habib SH, Makpol S, Abdul Hamid NA, Das S, Ngah WZ, Yusof YA
    Clinics (Sao Paulo), 2008 Dec;63(6):807-13.
    PMID: 19061005
    OBJECTIVE: To evaluate the effect of ginger extract on the expression of NFkappaB and TNF-alpha in liver cancer-induced rats.

    METHODS: Male Wistar rats were randomly divided into 5 groups based on diet: i) control (given normal rat chow), ii) olive oil, iii) ginger extract (100mg/kg body weight), iv) choline-deficient diet + 0.1% ethionine to induce liver cancer and v) choline-deficient diet + ginger extract (100mg/kg body weight). Tissue samples obtained at eight weeks were fixed with formalin and embedded in paraffin wax, followed by immunohistochemistry staining for NFkappaB and TNF-alpha.

    RESULTS: The expression of NFkappaB was detected in the choline-deficient diet group, with 88.3 +/- 1.83% of samples showing positive staining, while in the choline-deficient diet supplemented with ginger group, the expression of NFkappaB was significantly reduced, to 32.35 +/- 1.34% (p<0.05). In the choline-deficient diet group, 83.3 +/- 4.52% of samples showed positive staining of TNF-alpha, which was significantly reduced to 7.94 +/- 1.32% (p<0.05) when treated with ginger. There was a significant correlation demonstrated between NFkappaB and TNF-alpha in the choline-deficient diet group but not in the choline-deficient diet treated with ginger extract group.

    CONCLUSION: In conclusion, ginger extract significantly reduced the elevated expression of NFkappaB and TNF-alpha in rats with liver cancer. Ginger may act as an anti-cancer and anti-inflammatory agent by inactivating NFkappaB through the suppression of the pro-inflammatory TNF-alpha.

    Matched MeSH terms: NF-kappa B/metabolism
  5. Batumalaie K, Amin MA, Murugan DD, Sattar MZ, Abdullah NA
    Sci Rep, 2016 06 02;6:27236.
    PMID: 27250532 DOI: 10.1038/srep27236
    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings.
    Matched MeSH terms: NF-kappa B/metabolism
  6. Hajrezaie M, Paydar M, Looi CY, Moghadamtousi SZ, Hassandarvish P, Salga MS, et al.
    Sci Rep, 2015 Mar 13;5:9097.
    PMID: 25764970 DOI: 10.1038/srep09097
    The development of metal-based agents has had a tremendous role in the present progress in cancer chemotherapy. One well-known example of metal-based agents is Schiff based metal complexes, which hold great promise for cancer therapy. Based on the potential of Schiff based complexes for the induction of apoptosis, this study aimed to examine the cytotoxic and apoptotic activity of a CdCl2(C14H21N3O2) complex on HT-29 cells. The complex exerted a potent suppressive effect on HT-29 cells with an IC50 value of 2.57 ± 0.39 after 72 h of treatment. The collapse of the mitochondrial membrane potential and the elevated release of cytochrome c from the mitochondria to the cytosol indicate the involvement of the intrinsic pathway in the induction of apoptosis. The role of the mitochondria-dependent apoptotic pathway was further proved by the significant activation of the initiator caspase-9 and the executioner caspases-3 and -7. In addition, the activation of caspase-8, which is associated with the suppression of NF-κB translocation to the nucleus, also revealed the involvement of the extrinsic pathway in the induced apoptosis. The results suggest that the CdCl2(C14H21N3O2) complex is able to induce the apoptosis of colon cancer cells and is a potential candidate for future cancer studies.
    Matched MeSH terms: NF-kappa B/metabolism
  7. Faraj FL, Zahedifard M, Paydar M, Looi CY, Abdul Majid N, Ali HM, et al.
    ScientificWorldJournal, 2014;2014:212096.
    PMID: 25548779 DOI: 10.1155/2014/212096
    Two new synthesized and characterized quinazoline Schiff bases 1 and 2 were investigated for anticancer activity against MCF-7 human breast cancer cell line. Compounds 1 and 2 demonstrated a remarkable antiproliferative effect, with an IC50 value of 6.246×10(-6) mol/L and 5.910×10(-6) mol/L, respectively, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with 1 and 2 subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS formation. We also found activation of caspases-3/7, -8, and -9 in compounds 1 and 2. Moreover, inhibition of NF-κB translocation in MCF-7 cells treated by compound 1 significantly exhibited the association of extrinsic apoptosis pathway. Acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed significant activity towards MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway and are potential candidate for further in vivo and clinical breast cancer studies.
    Matched MeSH terms: NF-kappa B/metabolism
  8. Tham CL, Hazeera Harith H, Wai Lam K, Joong Chong Y, Singh Cheema M, Roslan Sulaiman M, et al.
    Eur J Pharmacol, 2015 Feb 15;749:1-11.
    PMID: 25560198 DOI: 10.1016/j.ejphar.2014.12.015
    2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC) has been proven to selectively inhibit the synthesis of proinflammatory mediators in lipopolysaccharide-induced U937 monocytes through specific interruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and improves the survival rate in a murine lethal sepsis model. The present study addressed the effects of BHMC upon lipopolysaccharide-induced endothelial dysfunction in human umbilical vein endothelial cells to determine the underlying mechanisms. The cytotoxicity effect of BHMC on HUVEC were determined by MTT assay. The effects of BHMC on endothelial dysfunction induced by lipopolysaccharide such as endothelial hyperpermeability, monocyte-endothelial adhesion, transendothelial migration, up-regulation of adhesion molecules and chemokines were evaluated. The effects of BHMC at transcriptional and post-translational levels were determined by Reverse Transcriptase-Polymerase Chain Reaction and Western Blots. The mode of action of BHMC was dissected by looking into the activation of Nuclear Factor-kappa B and Mitogen-Activated Protein Kinases. BHMC concentration-dependently reduced endothelial hyperpermeability, leukocyte-endothelial cell adhesion and monocyte transendothelial migration through inhibition of the protein expression of adhesion molecules (Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1) and secretion of chemokines (Monocyte Chemotactic Protein-1) at the transcriptional level. BHMC restored endothelial dysfunction via selective inhibition of p38 Mitogen-Activated Protein Kinase enzymatic activity which indirectly prevents the activation of Nuclear Factor-kappaB and Activator Protein-1 transcription factors. These findings further support earlier observations on the inhibition of BHMC on inflammatory events through specific disruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and provide new insights into the inhibitory effects of BHMC on lipopolysaccharide-induced endothelial dysfunction.
    Matched MeSH terms: NF-kappa B/metabolism
  9. Achoui M, Heyninck K, Looi CY, Mustafa AM, Haegeman G, Mustafa MR
    Drug Des Devel Ther, 2014;8:1993-2007.
    PMID: 25349474 DOI: 10.2147/DDDT.S68659
    The terpenoid 17-O-acetylacuminolide (AA) was shown to inhibit the production of several inflammatory mediators. However, the mechanisms by which this compound elicited its anti-inflammatory activity remain to be elucidated. In this study, we analyzed the effects of AA on inflammatory gene expression in two different cell types with primordial importance in the inflammatory processes - endothelial cells and macrophages. In human umbilical vein endothelial cells, AA inhibited the expression of inflammatory proteins including the adhesion molecules intercellular adhesion molecule 1; vascular cell adhesion molecule 1; and E-selectin, as well as the release of the chemokine interleukin-8. Additionally, AA hindered the formation of capillary-like tubes in an in vitro model of angiogenesis. AA's effects in endothelial cells can be attributed at least in part to AA's inhibition of tumor necrosis factor alpha-induced nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB)'s translocation. Also, in lipopolysaccharide-stimulated macrophage-like RAW264.7 cells, AA was able to downregulate the expression of the genes cyclooxygenase 2, inducible nitric oxide synthase, interleukin-6, and chemokine (C-C motif) ligand 2. Moreover, AA inhibited the phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-alpha (IκBα), IκB kinase (IKK), and the mitogen-activated protein kinases JNK, ERK, and p38. In conclusion, the present results further support the anti-inflammatory potential of AA in different models of inflammation.
    Matched MeSH terms: NF-kappa B/metabolism*
  10. Ibrahim MY, Hashim NM, Mohan S, Abdulla MA, Kamalidehghan B, Ghaderian M, et al.
    Drug Des Devel Ther, 2014;8:1629-47.
    PMID: 25302018 DOI: 10.2147/DDDT.S66105
    Cratoxylum arborescens is an equatorial plant belonging to the family Guttiferae. In the current study, α-Mangostin (AM) was isolated and its cell death mechanism was studied. HCS was undertaken to detect the nuclear condensation, mitochondrial membrane potential, cell permeability, and the release of cytochrome c. An investigation for reactive oxygen species formation was conducted using fluorescent analysis. To determine the mechanism of cell death, human apoptosis proteome profiler assay was conducted. In addition, using immunofluorescence and immunoblotting, the levels of Bcl-2-associated X protein (Bax) and B-cell lymphoma (Bcl)-2 proteins were also tested. Caspaces such as 3/7, 8, and 9 were assessed during treatment. Using HCS and Western blot, the contribution of nuclear factor kappa-B (NF-κB) was investigated. AM had showed a selective cytotoxicity toward the cancer cells with no toxicity toward the normal cells even at 30 μg/mL, thereby indicating that AM has the attributes to induce cell death in tumor cells. The treatment of MCF-7 cells with AM prompted apoptosis with cell death-transducing signals. This regulated the mitochondrial membrane potential by down-regulation of Bcl-2 and up-regulation of Bax, thereby causing the release of cytochrome c from the mitochondria into the cytosol. The liberation of cytochrome c activated caspace-9, which, in turn, activated the downstream executioner caspace-3/7 with the cleaved poly (ADP-ribose) polymerase protein, thereby leading to apoptotic alterations. Increase of caspace 8 had showed the involvement of an extrinsic pathway. This type of apoptosis was suggested to occur through both extrinsic and intrinsic pathways and prevention of translocation of NF-κB from the cytoplasm to the nucleus. Our results revealed AM prompt apoptosis of MCF-7 cells through NF-κB, Bax/Bcl-2 and heat shock protein 70 modulation with the contribution of caspaces. Moreover, ingestion of AM at (30 and 60 mg/kg) significantly reduced tumor size in an animal model of breast cancer. Our results suggest that AM is a potentially useful agent for the treatment of breast cancer.
    Matched MeSH terms: NF-kappa B/metabolism*
  11. Ansari SA, Devi S, Tenguria S, Kumar A, Ahmed N
    Cytokine, 2014 Aug;68(2):110-7.
    PMID: 24767863 DOI: 10.1016/j.cyto.2014.03.006
    HP0986 protein of Helicobacter pylori has been shown to trigger induction of proinflammatory cytokines (IL-8 and TNF-α) through the activation of NF-κB and also to induce Fas mediated apoptosis of human macrophage cells (THP-1). In this study, we unravel mechanistic details of the biological effects of this protein in a murine macrophage environment. Up regulation of MCP-1 and TNF-α in HP0986-induced RAW 264.7 cells occurred subsequent to the activation and translocation of NF-κB to the cell nucleus. Further, HP0986 induced apoptosis of RAW 264.7 cells through Fas activation and this was in agreement with previous observations made with THP-1 cells. Our studies indicated activation of TNFR1 through interaction with HP0986 and this elicited the aforementioned responses independent of TLR2, TLR4 or TNFR2. We found that mouse TNFR1 activation by HP0986 facilitates formation of a complex comprising of TNFR1, TRADD and TRAF2, and this occurs upstream of NF-κB activation. Furthermore, FADD also forms a second complex, at a later stage, together with TNFR1 and TRADD, resulting in caspase-8 activation and thereby the apoptosis of RAW 264.7 cells. In summary, our observations reveal finer details of the functional activity of HP0986 protein in relation to its behavior in a murine macrophage cell environment. These findings reconfirm the proinflammatory and apoptotic role of HP0986 signifying it to be an important trigger of innate responses. These observations form much needed baseline data entailing future in vivo studies of the functions of HP0986 in a murine model.
    Matched MeSH terms: NF-kappa B/metabolism
  12. Tor YS, Yazan LS, Foo JB, Armania N, Cheah YK, Abdullah R, et al.
    PMID: 24524627 DOI: 10.1186/1472-6882-14-55
    Breast cancer is one of the most dreading types of cancer among women. Herbal medicine has becoming a potential source of treatment for breast cancer. Herbal plant Dillenia suffruticosa (Griff) Martelli under the family Dilleniaceae has been traditionally used to treat cancerous growth. In this study, the anticancer effect of ethyl acetate extract of D. suffruticosa (EADs) was examined on human breast adenocarcinoma cell line MCF-7 and the molecular pathway involved was elucidated.
    Matched MeSH terms: NF-kappa B/metabolism
  13. Looi CY, Moharram B, Paydar M, Wong YL, Leong KH, Mohamad K, et al.
    PMID: 23837445 DOI: 10.1186/1472-6882-13-166
    Centratherum anthelminticum (L.) Kuntze (scientific synonyms: Vernonia anthelmintica; black cumin) is one of the ingredients of an Ayurvedic preparation, called "Kayakalp", commonly applied to treat skin disorders in India and Southeast Asia. Despite its well known anti-inflammatory property on skin diseases, the anti-cancer effect of C. anthelminticum seeds on skin cancer is less documented. The present study aims to investigate the anti-cancer effect of Centratherum anthelminticum (L.) seeds chloroform fraction (CACF) on human melanoma cells and to elucidate the molecular mechanism involved.
    Matched MeSH terms: NF-kappa B/metabolism*
  14. Ng ZX, Kuppusamy UR, Iqbal T, Chua KH
    Gene, 2013 Jun 1;521(2):227-33.
    PMID: 23545311 DOI: 10.1016/j.gene.2013.03.062
    Receptor for advanced glycation end-product (RAGE) gene polymorphism 2245G/A is associated with diabetic retinopathy (DR). However, the mechanism on how it affects the disease development is still unclear.
    Matched MeSH terms: NF-kappa B/metabolism
  15. In LL, Arshad NM, Ibrahim H, Azmi MN, Awang K, Nagoor NH
    PMID: 23043547 DOI: 10.1186/1472-6882-12-179
    Oral cancers although preventable, possess a low five-year survival rate which has remained unchanged over the past three decades. In an attempt to find a more safe, affordable and effective treatment option, we describe here the use of 1'S-1'-acetoxychavicol acetate (ACA), a component of Malaysian ginger traditionally used for various medicinal purposes.
    Matched MeSH terms: NF-kappa B/metabolism
  16. Mohan S, Abdelwahab SI, Kamalidehghan B, Syam S, May KS, Harmal NS, et al.
    Phytomedicine, 2012 Aug 15;19(11):1007-15.
    PMID: 22739412 DOI: 10.1016/j.phymed.2012.05.012
    The plant Artocarpus obtusus is a tropical plant that belongs to the family Moraceae. In the present study a xanthone compound Pyranocycloartobiloxanthone A (PA) was isolated from this plant and the apoptosis mechanism was investigated. PA induced cytotoxicity was observed using MTT assay. High content screening (HCS) was used to observe the nuclear condensation, cell permeability, mitochondrial membrane potential (MMP) and cytochrome c release. Reactive oxygen species formation was investigated on treated cells by using fluorescent analysis. Human apoptosis proteome profiler assays were performed to investigate the mechanism of cell death. In addition mRNA levels of Bax and Bcl2 were also checked using RT-PCR. Caspase 3/7, 8 and 9 were measured for their induction while treatment. The involvement of NF-κB was analyzed using HCS assay. The results showed that PA possesses the characteristics of selectively inducing cell death of tumor cells as no inhibition was observed in non-tumorigenic cells even at 30 μg/ml. Treatment of MCF7 cells with PA induced apoptosis with cell death-transducing signals, that regulate the MMP by down-regulation of Bcl2 and up-regulation of Bax, triggering the cytochrome c release from mitochondria to cytosol. The release of cytochrome c triggered the activation of caspases-9, then activates downstream executioner caspase-3/7 and consequently cleaved specific substrates leading to apoptotic changes. This form of apoptosis was found closely associated with the extrinsic pathway caspase (caspase-8) and inhibition of translocation of NF-κB from cytoplasm to nucleus. The results demonstrated that PA induced apoptosis of MCF7 cells through NF-κB and Bcl2/Bax signaling pathways with the involvement of caspases.
    Matched MeSH terms: NF-kappa B/metabolism*
  17. Yap WH, Khoo KS, Lim SH, Yeo CC, Lim YM
    Phytomedicine, 2012 Jan 15;19(2):183-91.
    PMID: 21893403 DOI: 10.1016/j.phymed.2011.08.058
    Maslinic acid, a natural pentacyclic triterpene has been shown to inhibit growth and induce apoptosis in some tumour cell lines. We studied the molecular response of Raji cells towards maslinic acid treatment. A proteomics approach was employed to identify the target proteins. Seventeen differentially expressed proteins including those involved in DNA replication, microtubule filament assembly, nucleo-cytoplasmic trafficking, cell signaling, energy metabolism and cytoskeletal organization were identified by MALDI TOF-TOF MS. The down-regulation of stathmin, Ran GTPase activating protein-1 (RanBP1), and microtubule associated protein RP/EB family member 1 (EB1) were confirmed by Western blotting. The study of the effect of maslinic acid on Raji cell cycle regulation showed that it induced a G1 cell cycle arrest. The differential proteomic changes in maslinic acid-treated Raji cells demonstrated that it also inhibited expression of dUTPase and stathmin which are known to induce early S and G2 cell cycle arrests. The mechanism of maslinic acid-induced cell cycle arrest may be mediated by inhibiting cyclin D1 expression and enhancing the levels of cell cycle-dependent kinase (CDK) inhibitor p21 protein. Maslinic acid suppressed nuclear factor-kappa B (NF-κB) activity which is known to stimulate expression of anti-apoptotic and cell cycle regulatory gene products. These results suggest that maslinic acid affects multiple signaling molecules and inhibits fundamental pathways regulating cell growth and survival in Raji cells.
    Matched MeSH terms: NF-kappa B/metabolism
  18. Lee ST, Wong PF, Cheah SC, Mustafa MR
    PLoS One, 2011;6(4):e18915.
    PMID: 21541327 DOI: 10.1371/journal.pone.0018915
    Alpha-tomatine (α-tomatine) is the major saponin in tomato (Lycopersicon esculentum). This study investigates the chemopreventive potential of α-tomatine on androgen-independent human prostatic adenocarcinoma PC-3 cells.
    Matched MeSH terms: NF-kappa B/metabolism*
  19. Ibrahim Abdelwahab S, Syaed Koko W, Mohamed Elhassan Taha M, Mohan S, Achoui M, Ameen Abdulla M, et al.
    Eur J Pharmacol, 2012 Mar 5;678(1-3):61-70.
    PMID: 22227329 DOI: 10.1016/j.ejphar.2011.12.024
    Columbin, a diterpenoid furanolactone, was isolated purely for the first time from the plant species Tinspora bakis. The anti-inflammatory effects of columbin were studied in vitro, in silico and in vivo. The effect of columbin on nitric oxide was examined on lipopolysaccharide-interferon-gamma (LPS/IFN) induced RAW264.7 macrophages. In vitro and in silico cyclooxygenase-1 and cyclooxygenase-2 inhibitory activities of columbin using biochemical kit and molecular docking, respectively, were investigated. Mechanism of columbin in suppressing NF-kappaB-translocation was tested using Cellomics®NF-κB activation assay and ArrayScan Reader in LPS-stimulated RAW264.7 cells. Moreover, effects of columbin in vivo that were done on carrageenan-induced mice paw-oedema were tested. Lastly, the in vitro and in vivo toxicities of columbin were examined on human liver cells and mice, respectively. Treatment with columbin or N(ω)-nitro-l-arginine methyl ester (l-NAME) inhibited LPS/IFN-γ-induced NO production without affecting the viability of RAW264.7. Pre-treatment of stimulated cells with columbin did not inhibit the translocation of NF-κB to the nucleus in LPS-stimulated cells. COX-1 and COX-2 inhibitory activities of columbin were 63.7±6.4% and 18.8±1.5% inhibition at 100μM, respectively. Molecular docking study further helped in supporting the observed COX-2 selectivity. Whereby, the interaction of columbin with Tyr385 and Arg120 signifies its higher activity in COX-2, as Tyr385 was reported to be involved in the abstraction of hydrogen from C-13 of arachidonate, and Arg120 is critical for high affinity arachidonate binding. Additionally, columbin inhibited oedema formation in mice paw. Lastly, the compound was observed to be safe in vitro and in vivo. This study presents columbin as a potential anti-inflammatory drug.
    Matched MeSH terms: NF-kappa B/metabolism*
  20. Alwahaibi NY, Budin SB, Mohamed J, Alhamdani A
    J Gastroenterol Hepatol, 2010 Apr;25(4):786-91.
    PMID: 20492335 DOI: 10.1111/j.1440-1746.2009.06160.x
    Selenium's molecular mechanism for cancer chemoprevention remains unknown. We aimed to study the gene expression of nuclear factor-kappaB (NF-kappaB), tumor growth factor-alpha (TGF-alpha) and cyclin D1 and the effects of sodium selenite using preventive and therapeutic approaches in chemically-induced hepatocarcinogenesis in rats.
    Matched MeSH terms: NF-kappa B/metabolism*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links