MATERIALS AND METHODS: A data set of 91 patients with high-risk acute lymphoblastic leukemia (ALL) followed for five years from 1982 to 1987 was chosen for fitting the mixture cure model. We used the maximum likelihood estimation technique via R software 3.6.2 to obtain the estimates for parameters of the proposed model in the existence of cure rate, censored data, and covariates. For the best model choice, the Akaike information criterion (AIC) was implemented.
RESULTS: After comparing different parametric models fitted to the data, including or excluding cure fraction, without covariates, the smallest AIC values were obtained by the EW and the GMW distributions, (953.31/969.35) and (955.84/975.99), respectively. Besides, assuming a mixture cure model based on GMW with covariates, an estimated ratio between cure fractions for allogeneic and autologous bone marrow transplant groups (and its 95% confidence intervals) were 1.42972 (95% CI: 1.18614 - 1.72955).
CONCLUSION: The results of this study reveal that the EW and the GMW distributions are the best choices for the survival times of Leukemia patients.
.
METHODS: We downloaded COVID-19 outbreak data of the number of confirmed cases in all countries as of October 19, 2020. The IRT-based predictive model was built to determine the pandemic IP for each country. A model building scheme was demonstrated to fit the number of cumulative infected cases. Model parameters were estimated using the Solver add-in tool in Microsoft Excel. The absolute advantage coefficient (AAC) was computed to track the IP at the minimum of incremental points on a given ogive curve. The time-to-event analysis (a.k.a. survival analysis) was performed to compare the difference in IPs among continents using the area under the curve (AUC) and the respective 95% confidence intervals (CIs). An online comparative dashboard was created on Google Maps to present the epidemic prediction for each country.
RESULTS: The top 3 countries that were hit severely by COVID-19 were France, Malaysia, and Nepal, with IP days at 263, 262, and 262, respectively. The top 3 continents that were hit most based on IP days were Europe, South America, and North America, with their AUCs and 95% CIs at 0.73 (0.61-0.86), 0.58 (0.31-0.84), and 0.54 (0.44-0.64), respectively. An online time-event result was demonstrated and shown on Google Maps, comparing the IP probabilities across continents.
CONCLUSION: An IRT modeling scheme fitting the epidemic data was used to predict the length of IP days. Europe, particularly France, was hit seriously by COVID-19 based on the IP days. The IRT model incorporated with AAC is recommended to determine the pandemic IP.