METHODS: Mice were initiated with single dose of 7,12-dimethylbenz[α]anthracene (DMBA) (390 nmol/100 μL) followed by, in subsequent week, repeated promotion (twice weekly; 22 weeks) with 12-O-tetradecanoylphorbol-13-acetate (TPA) (1.7 nmol/100 μL). Annonacin (85 nM) and curcumin (10 mg/kg; reference) were, respectively, applied topically to DMBA/TPA-induced mice 30 min before each TPA application for 22 weeks. Upon termination, histopathological examination of skin, liver and kidney as well as genes and proteins expression analysis were conducted to elucidate the potential mechanism of annonacin.
RESULTS: With comparison to the carcinogen control, Annonacin significantly increased the tumor latency period and reduced the tumor incidence, tumor burden and tumor volume, respectively. In addition, it also suppressed tumorigenesis manifested by significant reduction of hyperkeratosis, dermal papillae and number of keratin pearls on skin tissues. Annonacin also appeared to be non-toxic to liver and kidney. Significant modulation of both AKT, ERK, mTOR, p38, PTEN and Src genes and proteins were also observed in annonacin-targeted signaling pathway(s) against tumorigenesis.
CONCLUSIONS: Collectively, results of this study indicate that annonacin is a potential therapeutic compound targeting tumor promoting stage in skin tumorigenesis by modulating multiple gene and protein in cancer signaling pathways without apparent toxicity.
AIM OF THE STUDY: To assess topical anti-inflammatory effect of Haruan cream on 12-0-tetradecanoylphorbol-13-acetate (TPA)-induced chronic-like dermatitis in mice.
MATERIALS AND METHODS: Male ICR mice were randomized into six groups of five mice each: acetone (vehicle), TPA alone (negative control), three Haruan treatment groups (Haruan 1%, Haruan 5% and Haruan 10%) and hydrocortisone 1% (positive control). Briefly, both surfaces of mouse ears were applied with TPA (2.5μg/20μl acetone) for five times on alternate days and with Haruan or hydrocortisone 1% cream for the last three days. Mouse ear thickness was measured 24h after final treatment with the cream and the ears were harvested for further histological analysis and gene expression studies of TNF-α by real-time reverse transcriptase-polymerase chain reaction (RT-qPCR).
RESULTS: Topical application of Haruan cream had reduced the mouse ear thickness 18.1-28%) with comparable effect to the positive control. In addition, histopathological comparison had shown evident reduction in various parameters of cutaneous inflammation including dermal oedema, inflammatory cells infiltration and proliferation of epidermal keratinocytes. Furthermore, TPA application had resulted in the up-regulation of TNF-α gene expression by 353-fold, which was subsequently down-regulated by the Haruan cream (34- to 112-fold).
CONCLUSION: Haruan is an effective topical anti-inflammatory agent in this mouse model of chronic-like dermatitis, thus suggesting its potential as a non-steroidal treatment option for chronic inflammatory dermatoses.
METHODS: The antinociceptive potential of orally administered PECN (100, 250, 500 mg/kg) was studied using the abdominal constriction-, hot plate- and formalin-induced paw licking-test in mice (n = 6). The effect of PECN on locomotor activity was also evaluated using the rota rod assay. The role of opioid receptors was determined by pre-challenging 500 mg/kg PECN (p.o.) with antagonist of opioid receptor subtypes, namely β-funaltrexamine (β-FNA; 10 mg/kg; a μ-opioid antagonist), naltrindole (NALT; 1 mg/kg; a δ-opioid antagonist) or nor-binaltorphimine (nor-BNI; 1 mg/kg; a κ-opioid antagonist) followed by subjection to the abdominal constriction test. In addition, the role of L-arg/NO/cGMP pathway was determined by prechallenging 500 mg/kg PECN (p.o.) with L-arg (20 mg/kg; a NO precursor), 1H-[1, 2, 4] oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 2 mg/kg; a specific soluble guanylyl cyclase inhibitor), or the combinations thereof (L-arg + ODQ) for 5 mins before subjection to the abdominal constriction test. PECN was also subjected to phytoconstituents analyses.
RESULTS: PECN significantly (p 0.05) affect the locomotor activity of treated mice. The antinociceptive activity of PECN was significantly (p 0.05) affected by ODQ. HPLC analysis revealed the presence of at least cinnamic acid in PECN.
CONCLUSION: PECN exerted antinocicpetive activity at peripheral and central levels possibly via the activation of non-selective opioid receptors and modulation of the NO-mediated/cGMP-independent pathway partly via the synergistic action of phenolic compounds.
MAIN METHODS: A pull-down assay was performed to identify the binding partner of the L-SP40 peptide. Co-immunoprecipitation and co-localization assays with the L-SP40 peptide were employed to confirm the receptor partner in RD cells. The outcomes were validated using receptor knockdown and antibody blocking assays. The L-SP40 peptide was further evaluated for the protection of neonatal mice against lethal challenge by mouse-adapted EV-A71.
KEY FINDINGS: The L-SP40 peptide was found to interact and co-localize with nucleolin, the key attachment receptor of Enteroviruses A species, as demonstrated in the pull-down, co-immunoprecipitation and co-localization assays. Knockdown of nucleolin from RD cells led to a significant reduction of 3.5 logs of viral titer of EV-A71. The L-SP40 peptide demonstrated 80% protection of neonatal mice against lethal challenge by the mouse-adapted virus with a drastic reduction in the viral loads in the blood (~4.5 logs), skeletal muscles (1.5 logs) and brain stem (1.5 logs).
SIGNIFICANCE: L-SP40 peptide prevented severe hind limb paralysis and death in suckling mice and could serve as a potential broad-spectrum antiviral candidate to be further evaluated for safety and potency in future clinical trials against EV-A71.