METHODS: A 3D model of the liver tissue was developed. Saline infusion was described using the dual porosity model, while RFA was described using the electrostatic and bioheat transfer equations. Three infusion locations were investigated, namely at the proximal end, the middle and the distal end of the electrode. Investigations were carried out numerically using the finite element method.
RESULTS: Results indicated that greater thermal coagulation was found in the region of tissue occupied by the saline bolus. Infusion at the middle of the electrode led to the largest coagulation volume followed by infusion at the proximal and distal ends. It was also found that the ability to delay roll-off, as commonly associated with saline-infused RFA, was true only for the case when infusion is carried out at the middle. When infused at the proximal and distal ends, the occurrence of roll-off was advanced. This may be due to the rapid and more intense heating experienced by the tissue when infusion is carried out at the electrode ends where Joule heating is dominant.
CONCLUSION: Altering the location of saline infusion can influence the shape of the coagulation zone following saline-infused RFA. The ability to 'shift' the coagulation zone to a desired location opens up great opportunities for the development of more precise saline-infused RFA treatment that targets specific regions within the tissue.
METHODS: Magnetic resonance imaging scans of the head of a patient with a large left frontal cyst were segmented to construct a finite element model to study the E-field distribution during ECT. Five electrode configurations were investigated: right unilateral, left unilateral, bifrontal, and bitemporal and left anterior right temporal. The E-field distributions for all montages were compared with a hypothetical condition where brain tissue and electrical conductivity from the right frontal region was mirrored across the longitudinal fissure into the cyst.
RESULTS: Differences in mean E-field and 90th percentile E-fields were mainly observed in brain regions closest to the cyst including the left inferior frontal gyrus and left middle frontal gyrus. This trend was most pronounced in montages where the electrodes were closest to the cyst such as left unilateral and bitemporal.
CONCLUSION: The presence of a highly conductive cyst close to the ECT electrode tended to attract current into the cyst region, altering current pathways, with potential implications for therapeutic efficacy and safety. Placing electrodes farther away from the cyst is likely to minimize any effects on the E-field distribution and potentially clinical outcomes.