Displaying publications 61 - 80 of 83 in total

Abstract:
Sort:
  1. Wong SS, Abd-Jamil J, Abubakar S
    Viral Immunol, 2007 Sep;20(3):359-68.
    PMID: 17931106
    Outbreaks involving dengue viruses (DENV) of the same genotype occur in a cyclical pattern in Malaysia. Two cycles of outbreaks involving dengue virus type 2 (DENV-2) of the same genotype occurred in the 1990s in the Klang Valley, Malaysia. Sera of patients from the first outbreak and sera of mice inoculated with virus from the same outbreak had poorer neutralization activity against virus of the second outbreak. Conversely, patient sera from the second outbreak showed higher neutralization titer against virus of the early outbreak. At subneutralizing concentrations, sera of mice immunized with second outbreak virus did not significantly enhance infection with viruses from the earlier outbreak. Amino acid substitution from valine to isoleucine at position 129 of the envelope protein (E), as well as threonine to alanine at position 117 and lysine to arginine at position 272 of the NS1 protein, differentiated viruses of the two outbreaks. These findings highlight the potential influence of specific intragenotypic variations in eliciting varied host immune responses against the different DENV subgenotypes. This could be an important contributing factor in the recurring homogenotypic dengue virus outbreaks seen in dengue-endemic regions.
    Matched MeSH terms: Dengue Virus/genetics
  2. L'Azou M, Moureau A, Sarti E, Nealon J, Zambrano B, Wartel TA, et al.
    N Engl J Med, 2016 Mar 24;374(12):1155-66.
    PMID: 27007959 DOI: 10.1056/NEJMoa1503877
    BACKGROUND: The control groups in two phase 3 trials of dengue vaccine efficacy included two large regional cohorts that were followed up for dengue infection. These cohorts provided a sample for epidemiologic analyses of symptomatic dengue in children across 10 countries in Southeast Asia and Latin America in which dengue is endemic.
    METHODS: We monitored acute febrile illness and virologically confirmed dengue (VCD) in 3424 healthy children, 2 to 16 years of age, in Asia (Indonesia, Malaysia, the Philippines, Thailand, and Vietnam) from June 2011 through December 2013 and in 6939 children, 9 to 18 years of age, in Latin America (Brazil, Colombia, Honduras, Mexico, and Puerto Rico) from June 2011 through April 2014. Acute febrile episodes were determined to be VCD by means of a nonstructural protein 1 antigen immunoassay and reverse-transcriptase-polymerase-chain-reaction assays. Dengue hemorrhagic fever was defined according to 1997 World Health Organization criteria.
    RESULTS: Approximately 10% of the febrile episodes in each cohort were confirmed to be VCD, with 319 VCD episodes (4.6 episodes per 100 person-years) occurring in the Asian cohort and 389 VCD episodes (2.9 episodes per 100 person-years) occurring in the Latin American cohort; no trend according to age group was observed. The incidence of dengue hemorrhagic fever was less than 0.3 episodes per 100 person-years in each cohort. The percentage of VCD episodes requiring hospitalization was 19.1% in the Asian cohort and 11.1% in the Latin American cohort. In comparable age groups (9 to 12 years and 13 to 16 years), the burden of dengue was higher in Asia than in Latin America.
    CONCLUSIONS: The burdens of dengue were substantial in the two regions and in all age groups. Burdens varied widely according to country, but the rates were generally higher and the disease more frequently severe in Asian countries than in Latin American countries. (Funded by Sanofi Pasteur; CYD14 and CYD15 ClinicalTrials.gov numbers, NCT01373281 and NCT01374516.).
    Note: Malaysia is a study site (CYD14 Primary Study Group authors: HIHJMI, Pediatric Institute, Kuala Lumpur Hospital, Kuala Lumpur; RN, Department of Paediatrics, Hospital Pulau Pinang, Pulau Pinang, Malaysia)
    Matched MeSH terms: Dengue Virus/genetics
  3. Kobayashi N, Thayan R, Sugimoto C, Oda K, Saat Z, Vijayamalar B, et al.
    Am J Trop Med Hyg, 1999 Jun;60(6):904-9.
    PMID: 10403318
    To characterize the dengue epidemic that recently occurred in Malaysia, we sequenced cDNAs from nine 1993-1994 dengue virus type-3 (DEN-3) isolates in Malaysia (DEN-3 was the most common type in Malaysia during this period). Nucleic acid sequences (720 nucleotides in length) from the nine isolates, encompassing the precursor of membrane protein (preM) and membrane (M) protein genes and part of the envelope (E) protein gene were aligned with various reference DEN-3 sequences to generate a neighbor-joining phylogenetic tree. According to the constructed tree, the nine Malaysian isolates were grouped into subtype II, which comprises Thai isolates from 1962 to 1987. Five earlier DEN-3 virus Malaysian isolates from 1974 to 1981 belonged to subtype I. The present data indicate that the recent dengue epidemic in Malaysia was due to the introduction of DEN-3 viruses previously endemic to Thailand.
    Matched MeSH terms: Dengue Virus/genetics
  4. Guan J, He Z, Qin M, Deng X, Chen J, Duan S, et al.
    BMC Infect Dis, 2021 Feb 10;21(1):166.
    PMID: 33568111 DOI: 10.1186/s12879-021-05823-3
    BACKGROUND: An unexpected dengue outbreak occurred in Hunan Province in 2018. This was the first dengue outbreak in this area of inland China, and 172 cases were reported.

    METHODS: To verify the causative agent of this outbreak and characterise the viral genes, the genes encoding the structural proteins C/prM/E of viruses isolated from local residents were sequenced followed by mutation and phylogenetic analysis. Recombination, selection pressure, potential secondary structure and three-dimensional structure analyses were also performed.

    RESULTS: Phylogenetic analysis revealed that all epidemic strains were of the cosmopolitan DENV-2 genotype and were most closely related to the Zhejiang strain (MH010629, 2017) and then the Malaysia strain (KJ806803, 2013). Compared with the sequence of DENV-2SS, 151 base substitutions were found in the sequences of 89 isolates; these substitutions resulted in 20 non-synonymous mutations, of which 17 mutations existed in all samples (two in the capsid protein, six in the prM/M proteins, and nine in the envelope proteins). Moreover, amino acid substitutions at the 602nd (E322:Q → H) and 670th (E390: N → S) amino acids may have enhanced the virulence of the epidemic strains. One new DNA binding site and five new protein binding sites were observed. Two polynucleotide binding sites and seven protein binding sites were lost in the epidemic strains compared with DENV-2SS. Meanwhile, five changes were found in helical regions. Minor changes were observed in helical transmembrane and disordered regions. The 429th amino acid of the E protein switched from a histamine (positively charged) to an asparagine (neutral) in all 89 isolated strains. No recombination events or positive selection pressure sites were observed. To our knowledge, this study is the first to analyse the genetic characteristics of epidemic strains in the first dengue outbreak in Hunan Province in inland China.

    CONCLUSIONS: The causative agent is likely to come from Zhejiang Province, a neighbouring province where dengue fever broke out in 2017. This study may help clarify the intrinsic geographical relatedness of DENV-2 and contribute to further research on pathogenicity and vaccine development.

    Matched MeSH terms: Dengue Virus/genetics*
  5. Jabanathan SG, Xuan LZ, Ramanathan B
    Methods Mol Biol, 2021;2296:279-302.
    PMID: 33977455 DOI: 10.1007/978-1-0716-1358-0_17
    Dengue is an arthropod-borne viral disease that has become endemic and a global threat in over 100 countries. The increase in prevalence would require a long-term measure to control outbreaks. Sanofi Pasteur has licensed the tetravalent dengue vaccine (Dengvaxia) in certain dengue endemic countries. However, the efficacy of the vaccine is limited against certain dengue serotypes and can only be used for individuals from the age from 9 to 45 years old. Over the years, there has been intense research conducted on the development of antivirals against dengue virus (DENV) through either inhibiting the virus replication or targeting the host cell mechanism to block the virus entry. However, no approved antiviral drug against dengue is yet available. In this chapter, we describe the dengue antiviral development workflow including (i) prophylactic, (ii) virucidal, and (iii) postinfection assays that are employed in the antiviral drug screening process against DENV. Further, we demonstrate different methods that can be used to enumerate the reduction in virus foci number including foci-forming unit reduction assay (FFURA), estimation of viral RNA copy number through quantitative real-time PCR, and a high-throughput enzyme linked immunosorbent assay (ELISA)-based quantification of virus particles.
    Matched MeSH terms: Dengue Virus/genetics
  6. Chem YK, Chua KB, Malik Y, Voon K
    Trop Biomed, 2015 Jun;32(2):344-51.
    PMID: 26691263 MyJurnal
    Monoclonal antibody-escape variant of dengue virus type 1 (MabEV DEN-1) was discovered and isolated in an outbreak of dengue in Klang Valley, Malaysia from December 2004 to March 2005. This study was done to investigate whether DEN152 (an isolate of MabEV DEN-1) is a product of recombination event or not. In addition, the non-synonymous mutations that correlate with the monoclonal antibody-escape variant were determined in this study. The genomes of DEN152 and two new DEN-1 isolates, DENB04 and DENK154 were completely sequenced, aligned, and compared. Phylogenetic tree was plotted and the recombination event on DEN152 was investigated. DEN152 is sub-grouped under genotype I and is closely related genetically to a DEN-1 isolated in Japan in 2004. DEN152 is not a recombinant product of any parental strains. Four amino acid substitutions were unique only to DEN 152. These amino acid substitutions were (Ser)[326](Leu), (Ser)[340](Leu) at the deduced E protein, (Ile)[250](Thr) at NS1 protein, and (Thr)[41](Ser) at NS5 protein. Thus, DEN152 is an isolate of the emerging monoclonal antibody-escape variant DEN-1 that escaped diagnostic laboratory detection.
    Matched MeSH terms: Dengue Virus/genetics
  7. Suppiah J, Ching SM, Amin-Nordin S, Mat-Nor LA, Ahmad-Najimudin NA, Low GK, et al.
    PLoS Negl Trop Dis, 2018 09;12(9):e0006817.
    PMID: 30226880 DOI: 10.1371/journal.pntd.0006817
    BACKGROUND: Malaysia experienced an unprecedented dengue outbreak from the year 2014 to 2016 that resulted in an enormous increase in the number of cases and mortality as compared to previous years. The causes that attribute to a dengue outbreak can be multifactorial. Viral factors, such as dengue serotype and genotype, are the components of interest in this study. Although only a small number of studies investigated the association between the serotype of dengue virus and clinical manifestations, none of these studies included analyses on dengue genotypes. The present study aims to investigate dengue serotype and genotype-specific clinical characteristics among dengue fever and severe dengue cases from two Malaysian tertiary hospitals between 2014 and mid-2017.

    METHODOLOGY AND PRINCIPAL FINDINGS: A total of 120 retrospective dengue serum specimens were subjected to serotyping and genotyping by Taqman Real-Time RT-PCR, sequencing and phylogenetic analysis. Subsequently, the dengue serotype and genotype data were statistically analyzed for 101 of 120 corresponding patients' clinical manifestations to generate a descriptive relation between the genetic components and clinical outcomes of dengue infected patients. During the study period, predominant dengue serotype and genotype were found to be DENV 1 genotype I. Additionally, non-severe clinical manifestations were commonly observed in patients infected with DENV 1 and DENV 3. Meanwhile, patients with DENV 2 infection showed significant warning signs and developed severe dengue (p = 0.007). Cases infected with DENV 2 were also commonly presented with persistent vomiting (p = 0.010), epigastric pain (p = 0.018), plasma leakage (p = 0.004) and shock (p = 0.038). Moreover, myalgia and arthralgia were highly prevalent among DENV 3 infection (p = 0.015; p = 0.014). The comparison of genotype-specific clinical manifestations showed that DENV 2 Cosmopolitan was significantly common among severe dengue patients. An association was also found between genotype I of DENV 3 and myalgia. In a similar vein, genotype III of DENV 3 was significantly common among patients with arthralgia.

    CONCLUSION: The current data contended that different dengue serotype and genotype had caused distinct clinical characteristics in infected patients.

    Matched MeSH terms: Dengue Virus/genetics
  8. Dighe SN, Ekwudu O, Dua K, Chellappan DK, Katavic PL, Collet TA
    Eur J Med Chem, 2019 Aug 15;176:431-455.
    PMID: 31128447 DOI: 10.1016/j.ejmech.2019.05.010
    Dengue is the most important arthropod-borne viral disease of humans, with more than half of the global population living in at-risk areas. Despite the negative impact on public health, there are no antiviral therapies available, and the only licensed vaccine, Dengvaxia®, has been contraindicated in children below nine years of age. In an effort to combat dengue, several small molecules have entered into human clinical trials. Here, we review anti-DENV molecules and their drug targets that have been published within the past five years (2014-2018). Further, we discuss their probable mechanisms of action and describe a role for classes of clinically approved drugs and also an unclassified class of anti-DENV agents. This review aims to enhance our understanding of novel agents and their cognate targets in furthering innovations in the use of small molecules for dengue drug therapies.
    Matched MeSH terms: Dengue Virus/genetics
  9. Ahmad Z, Poh CL
    Int J Med Sci, 2019;16(3):355-365.
    PMID: 30911269 DOI: 10.7150/ijms.29938
    Dengue virus belongs to the Flaviviridae family which also includes viruses such as the Zika, West Nile and yellow fever virus. Dengue virus generally causes mild disease, however, more severe forms of the dengue virus infection, dengue haemorrhagic fever (DHF) and dengue haemorrhagic fever with shock syndrome (DSS) can also occur, resulting in multiple organ failure and even death, especially in children. The only dengue vaccine available in the market, CYD-TDV offers limited coverage for vaccinees from 9-45 years of age and is only recommended for individuals with prior dengue exposure. A number of mutations that were shown to attenuate virulence of dengue virus in vitro and/or in vivo have been identified in the literature. The mutations which fall within the conserved regions of all four dengue serotypes are discussed. This review hopes to provide information leading to the construction of a live attenuated dengue vaccine that is suitable for all ages, irrespective of the infecting dengue serotype and prior dengue exposure.
    Matched MeSH terms: Dengue Virus/genetics*
  10. Pok KY, Squires RC, Tan LK, Takasaki T, Abubakar S, Hasebe F, et al.
    Western Pac Surveill Response J, 2015 Jun 30;6(2):73-81.
    PMID: 26306220 DOI: 10.5365/WPSAR.2015.6.1.017
    Accurate laboratory testing is a critical component of dengue surveillance and control. The objective of this programme was to assess dengue diagnostic proficiency among national-level public health laboratories in the World Health Organization (WHO) Western Pacific Region.
    Matched MeSH terms: Dengue Virus/genetics
  11. Teoh PG, Ooi AS, AbuBakar S, Othman RY
    J Biomed Biotechnol, 2009;2009:781712.
    PMID: 19325913 DOI: 10.1155/2009/781712
    A Cucumber green mottle mosaic virus (CGMMV) was used to present a truncated dengue virus type 2 envelope (E) protein binding region from amino acids 379 to 423 (EB4). The EB4 gene was inserted at the terminal end of the CGMMV coat protein (CP) open reading frame (ORF). Read-through sequences of TMV or CGMMV, CAA-UAG-CAA-UUA, or AAA-UAG-CAA-UUA were, respectively, inserted in between the CP and the EB4 genes. The chimeric clones, pRT, pRG, and pCG+FSRTRE, were transcribed into full-length capped recombinant CGMMV transcripts. Only constructs with the wild-type CGMMV read-through sequence yielded infectious viruses following infection of host plant, muskmelon (Cucumis melo) leaves. The ratio of modified to unmodified CP for the read-through expression clone developed was also found to be approximately 1:1, higher than what has been previously reported. It was also observed that infectivity was not affected by differences in pI between the chimera and its wild counterpart. Analysis of recombinant viruses after 21-days-postinculation (dpi) revealed that deletions occurred resulting in partial reversions of the viral population to near wild type and suggesting that this would be the limiting harvest period for obtaining true to type recombinants with this construct.
    Matched MeSH terms: Dengue Virus/genetics*
  12. Teoh BT, Sam SS, Tan KK, Danlami MB, Shu MH, Johari J, et al.
    J Clin Microbiol, 2015 Mar;53(3):830-7.
    PMID: 25568438 DOI: 10.1128/JCM.02648-14
    A method for the rapid diagnosis of early dengue virus (DENV) infection is highly needed. Here, a prototype reverse transcription-recombinase polymerase amplification (RT-RPA) assay was developed. The assay detected DENV RNA in <20 min without the need for thermocycling amplification. The assay enabled the detection of as few as 10 copies of DENV RNA. The designed RT-RPA primers and exo probe detected the DENV genome of at least 12 genotypes of DENV circulating globally without cross-reacting with other arboviruses. We assessed the diagnostic performance of the RT-RPA assay for the detection of DENV RNA in 203 serum samples of patients with clinically suspected dengue. The sera were simultaneously tested for DENV using a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay, quantitative RT-PCR (qRT-PCR), and IgM- and IgG-capture enzyme-linked immunosorbent assays (ELISA). Acute DENV infection was confirmed in 130 samples and 61 of the samples (46.9%) were classified as viremic with qRT-PCR. The RT-RPA assay showed good concordance (κ of ≥0.723) with the RT-LAMP and qRT-PCR assays in detecting the dengue viremic samples. When used in combination with ELISA, both the RT-RPA and RT-LAMP assays increased the detection of acute DENV infection to ≥95.7% (≥45/47) in samples obtained within 5 days of illness. The results from the study suggest that the RT-RPA assay is the most rapid molecular diagnostic tool available for the detection of DENV. Hence, it is possible to use the RT-RPA assay in a laboratory to complement routine serology testing for dengue.
    Matched MeSH terms: Dengue Virus/genetics
  13. Chen RE, Smith BK, Errico JM, Gordon DN, Winkler ES, VanBlargan LA, et al.
    Cell Host Microbe, 2021 Nov 10;29(11):1634-1648.e5.
    PMID: 34610295 DOI: 10.1016/j.chom.2021.09.006
    Although divergent dengue viruses (DENVs) have been isolated in insects, nonhuman primates, and humans, their relationships to the four canonical serotypes (DENV 1-4) are poorly understood. One virus isolated from a dengue patient, DKE-121, falls between genotype and serotype levels of sequence divergence to DENV-4. To examine its antigenic relationship to DENV-4, we assessed serum neutralizing and protective activity. Whereas DENV-4-immune mouse sera neutralize DKE-121 infection, DKE-121-immune sera inhibit DENV-4 less efficiently. Passive transfer of DENV-4 or DKE-121-immune sera protects mice against homologous, but not heterologous, DENV-4 or DKE-121 challenge. Antigenic cartography suggests that DENV-4 and DKE-121 are related but antigenically distinct. However, DENV-4 vaccination confers protection against DKE-121 in nonhuman primates, and serum from humans immunized with a tetravalent vaccine neutralize DENV-4 and DKE-121 infection equivalently. As divergent DENV strains, such as DKE-121, may meet criteria for serotype distinction, monitoring their capacity to impact dengue disease and vaccine efficacy appears warranted.
    Matched MeSH terms: Dengue Virus/genetics*
  14. Ngwe Tun MM, Muthugala R, Nabeshima T, Soe AM, Dumre SP, Rajamanthri L, et al.
    PLoS One, 2020;15(6):e0234508.
    PMID: 32555732 DOI: 10.1371/journal.pone.0234508
    Dengue virus (DENV) infection remains a major public health concern in many parts of the world, including Southeast Asia and the Americas. Sri Lanka experienced its largest dengue outbreak in 2017. Neurological symptoms associated with DENV infection have increasingly been reported in both children and adults. Here, we characterize DENV type 2 (DENV-2) strains, which were isolated from cerebrospinal fluid (CSF) and/or serum of patients with dengue encephalitis. Acute serum and CSF samples from each patient were subjected to dengue-specific non-structural protein 1 (NS1) antigen test, IgM and IgG enzyme-linked immunosorbent assay (ELISA), virus isolation, conventional and real-time polymerase chain reaction (PCR), and next-generation sequencing (NGS). Among the 5 dengue encephalitis patients examined, 4 recovered and 1 died. DENV-2 strains were isolated from serum and/or CSF samples of 3 patients. The highest viral genome levels were detected in the CSF and serum of the patient who succumbed to the illness. A phylogenetic tree revealed that the DENV-2 isolates belonged to a new clade of cosmopolitan genotype and were genetically close to strains identified in China, South Korea, Singapore, Malaysia, Thailand, and the Philippines. According to the NGS analysis, greater frequencies of nonsynonymous and synonymous mutations per gene were identified in the nonstructural genes. The full genomes of serum- and CSF-derived DENV-2 from the same patient shared 99.7% similarity, indicating that the virus spread across the blood-brain barrier. This is the first report to describe neurotropic DENV-2 using whole-genome analysis and to provide the clinical, immunological, and virological characteristics of dengue encephalitis patients during a severe dengue outbreak in Sri Lanka in 2017.
    Matched MeSH terms: Dengue Virus/genetics
  15. Chan SY, Kautner IM, Lam SK
    J Virol Methods, 1994 Oct;49(3):315-22.
    PMID: 7868649
    The potential of RT-PCR to rapidly diagnose dengue infections from both acute and convalescent phase patients' sera was evaluated. The RNA extraction method involved binding of the viral RNA to silica particles in the presence of high concentration of guanidine thiocyanate. The protocol that was established was sensitive enough to detect 40 plaque forming units per 100 microliter of serum and results could be obtained within one day. Results from this study indicate that clinical samples should be collected in the early acute phase of illness when anti-dengue antibodies were undetectable or of low titres to ensure a more reliable diagnosis.
    Matched MeSH terms: Dengue Virus/genetics
  16. Kassim FM, Izati MN, TgRogayah TA, Apandi YM, Saat Z
    PMID: 21706934
    Accurate and timely diagnosis of dengue virus is important for early detection of dengue virus infection. In this study, the usefulness of the dengue NS1 antigen test was evaluated as a routine, rapid diagnostic test for dengue virus infection. A total of 208 sera from patients suspected of having dengue virus infection were collected and tested for dengue antibody, dengue genome and dengue NS1 antigen. Dengue antibody test, dengue PCR test and dengue antigen test were able to detect dengue virus infection from Days 1 to 8 in 72.8, 52.8 and 44.0% of samples, respectively. Of the 208 sera tested, 69.2% (144/208) of the acute sera were positive for dengue virus infection based on IgM antibody, IgG antibody, NS1 antigen and PCR tests. Thirty-two point two percent of the samples (67/208) were found positive for dengue NS1 antigen, 38.5% (80/208) were PCR positive, 40.9% (85/208) were IgM positive and 36.1% (75/208) were IgG positive for dengue virus. The results reveal the detection rate of dengue virus infection was similar for PCR and dengue antibody (65.9%) and for NS1 antigen and dengue antibody (62.0%) combinations. Therefore, the dengue NS1 antigen test can be used to complement the current antibody test used in peripheral laboratories. Thus, the combination of the NS1 antigen and antibody tests could increase the diagnostic efficiency for early diagnosis of dengue infection.
    Matched MeSH terms: Dengue Virus/genetics
  17. Appanna R, Ponnampalavanar S, Lum Chai See L, Sekaran SD
    PLoS One, 2010;5(9).
    PMID: 20927388 DOI: 10.1371/journal.pone.0013029
    The human leukocyte antigen alleles have been implicated as probable genetic markers in predicting the susceptibility and/or protection to severe manifestations of dengue virus (DENV) infection. In this present study, we aimed to investigate for the first time, the genotype variants of HLA Class 1(-A and -B) of DENV infected patients against healthy individuals in Malaysia.
    Matched MeSH terms: Dengue Virus/genetics
  18. Osman O, Fong MY, Devi S
    Jpn J Infect Dis, 2007 Jul;60(4):205-8.
    PMID: 17642533
    The purpose of this study was to examine the extent of dengue infection in Brunei and to determine the predominant serotype circulating in the country. The study generated useful epidemiological data on dengue infection in Brunei. A total of 271 samples from patients suspected of having dengue infections were selected and analyzed. All patients were seen in clinics and hospitals in Brunei. The samples were collected from April 2005 to April 2006 and transported to the WHO Collaborating Centre for Arbovirus Reference and Research, University of Malaya, Malaysia. The following tests were used to achieve the objectives: in-house IgM-capture enzyme-linked immunosorbent assay, virus isolation in mosquito albopictus cell line (C6/36), and viral RNA detection and serotyping by reverse transcriptase-polymerase chain reaction (RT-PCR). The results show that 45 people were positive for dengue-specific IgM (27 males and 18 females), while RT-PCR detected dengue viral RNA in 12 patients, 3 identified as DEN-1 and 9 as DEN-2. Dengue virus was isolated from 6 patients using the C6/36 cell line; 3 were DEN-2 isolates and 3 were DEN-1 isolates. These data show that dengue virus is circulating in Brunei and the predominant infecting serotype for that period was DEN-2 followed by DEN-1. This study is the first to report the detection and isolation of dengue virus from Brunei using RT-PCR and culture in the C6/36 albopictus mosquito cell line.
    Matched MeSH terms: Dengue Virus/genetics
  19. Ngwe Tun MM, Muthugala R, Nabeshima T, Rajamanthri L, Jayawardana D, Attanayake S, et al.
    J Clin Virol, 2020 04;125:104304.
    PMID: 32145478 DOI: 10.1016/j.jcv.2020.104304
    BACKGROUND: Sri Lanka experienced its largest dengue outbreak in 2017 with more than 185,000 dengue cases including at least 250 fatalities.

    OBJECTIVES: Our study aimed to characterize the clinical, immunological and virological features of confirmed dengue patients in Sri Lanka during the outbreak in 2017 when unusual manifestations of severe dengue were observed.

    STUDY DESIGN: Sera from 295 patients who were admitted to Teaching Hospital Kandy, Kandy, Sri Lanka between March 2017- January 2018 were subjected to NS1 antigen, IgM and IgG ELISAs, virus isolation, conventional and real time RT-PCR and next generation sequencing.

    RESULTS: Primary and secondary infections were detected in 48.5 % and 51.5 % of the study population, respectively. Two hundred twenty five DENV strains were isolated (219 DENV-2, one DENV-3, two DENV-4, two mixed infections of DENV-2 and -3 and one mixed infection of DENV-2 and -4). Unusual and severe manifestations such as encephalitis, encephalopathy, liver failure, kidney failure, myocarditis, Guillain-Barré syndrome and multi-organ failure were noted in 44 dengue patients with 11 deaths. The viraemia levels in patients with primary infection and unusual manifestations were significantly higher compared to those in patients with secondary infection. A new clade of DENV-2 Cosmopolitan genotype strains was observed with the strains closely related to those from China, Malaysia, Indonesia, Singapore and Taiwan.

    CONCLUSIONS: The new clade of DENV-2 cosmopolitan genotype observed in Sri Lanka in 2017 caused an unprecedented, severe dengue outbreak. The emergence of DENV-3 and DENV-4 in the 2017 outbreak might cause future outbreaks in Sri Lanka.

    Matched MeSH terms: Dengue Virus/genetics*
  20. Dhanoa A, Hassan SS, Ngim CF, Lau CF, Chan TS, Adnan NA, et al.
    BMC Infect Dis, 2016 08 11;16(1):406.
    PMID: 27514512 DOI: 10.1186/s12879-016-1731-8
    BACKGROUND: The co-circulation of 4 DENV serotypes in geographically expanding area, has resulted in increasing occurrence of DENV co-infections. However, studies assessing the clinical impact of DENV co-infections have been scarce and have involved small number of patients. This study explores the impact of DENV co-infection on clinical manifestations and laboratory parameters.

    METHODS: This retrospective study involved consecutive hospitalized patients with non-structural protein 1 (NS1) antigen positivity during an outbreak (Jan to April 2014). Multiplex RT-PCR was performed directly on NS1 positive serum samples to detect and determine the DENV serotypes. All PCR-positive serum samples were inoculated onto C6/36 cells. Multiplex PCR was repeated on the supernatant of the first blind passage of the serum-infected cells. Random samples of supernatant from the first passage of C6/36 infected cells were subjected to whole genome sequencing. Clinical and laboratory variables were compared between patients with and without DENV co-infections.

    RESULTS: Of the 290 NS1 positive serum samples, 280 were PCR positive for DENV. Medical notes of 262 patients were available for analysis. All 4 DENV serotypes were identified. Of the 262 patients, forty patients (15.3 %) had DENV co-infections: DENV-1/DENV-2(85 %), DENV-1/DENV-3 (12.5 %) and DENV-2/DENV-3 (2.5 %). Another 222 patients (84.7 %) were infected with single DENV serotype (mono-infection), with DENV- 1 (76.6 %) and DENV- 2 (19.8 %) predominating. Secondary dengue infections occurred in 31.3 % patients. Whole genome sequences of random samples representing DENV-1 and DENV-2 showed heterogeneity amongst the DENVs. Multivariate analysis revealed that pleural effusion and the presence of warning signs were significantly higher in the co-infected group, both in the overall and subgroup analysis. Diarrhoea was negatively associated with co-infection. Additionally, DENV-2 co-infected patients had higher frequency of patients with severe thrombocytopenia (platelet count < 50,000/mm(3)), whereas DENV-2 mono-infections presented more commonly with myalgia. Elevated creatinine levels were more frequent amongst the co-infected patients in univariate analysis. Haemoconcentration and haemorrhagic manifestations were not higher amongst the co-infected patients. Serotypes associated with severe dengue were: DENV-1 (n = 9), DENV-2 (n = 1), DENV-3 (n = 1) in mono-infected patients and DENV-1/DENV-2 (n = 5) and DENV-1/DENV-3 (n = 1) amongst the co-infected patients.

    CONCLUSION: DENV co-infections are not uncommon in a hyperendemic region and co-infected patients are skewed towards more severe clinical manifestations compared to mono-infected patients.

    Matched MeSH terms: Dengue Virus/genetics*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links