Displaying publications 61 - 79 of 79 in total

Abstract:
Sort:
  1. Muhammad Awaludin, M.S., Mariattia, M.
    MyJurnal
    Porous ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. In this study, porous hydroxyapatite (HA) was produced via polymer replication method. Polyurethane (PU) sponge was selected as the template and synthetic binder, polyvinyl alcohol (PVA) was used in this study. Fixed formulation of HA powder, distilled water and PVA (40:60:3) were prepared and stirred at a constant 4 hours time. PU sponges with 30 ppi and 60 ppi size were cut and impregnated in slurry using vacuum and roller infiltration methods. The microstructures were observed by using field emission scanning electron microscope (FESEM). The results obtained indicate that vacuum infiltration method and 60 ppi template pore size exhibited the highest compressive strength with moderate average strut thickness and lowest average pore size compared to samples produced by roller infiltration method at different template pore size.
    Matched MeSH terms: Bone Substitutes
  2. Abdullah B, Shibghatullah AH, Hamid SS, Omar NS, Samsuddin AR
    Cell Tissue Bank, 2009 Aug;10(3):205-13.
    PMID: 18975136 DOI: 10.1007/s10561-008-9111-2
    This study was performed to determine the microscopic biological response of human nasal septum chondrocytes and human knee articular chondrocytes placed on a demineralized bovine bone scaffold. Both chondrocytes were cultured and seeded onto the bovine bone scaffold with seeding density of 1 x 105 cells per 100 microl/scaffold and incubated for 1, 2, 5 and 7 days. Proliferation and viability of the cells were measured by mitochondrial dehydrogenase activity (MTT assay), adhesion study was analyzed by scanning electron microscopy and differentiation study was analyzed by immunofluorescence staining and confocal laser scanning electron microscopy. The results showed good proliferation and viability of both chondrocytes on the scaffolds from day 1 to day 7. Both chondrocytes increased in number with time and readily grew on the surface and into the open pores of the scaffold. Immunofluorescence staining demonstrated collagen type II on the scaffolds for both chondrocytes. The results showed good cells proliferation, attachment and maturity of the chondrocytes on the demineralized bovine bone scaffold. The bovine bone being easily resourced, relatively inexpensive and non toxic has good potential for use as a three dimensional construct in cartilage tissue engineering.
    Matched MeSH terms: Bone Substitutes*
  3. Hashim N, Sabudin S, Ibrahim S, Zin NM, Bakar SH, Fazan F
    Med J Malaysia, 2004 May;59 Suppl B:103-4.
    PMID: 15468839
    Hydroxyapatite (HA; Ca10(PO4)6(OH)2), is one of the significant implant materials used in Orthopaedics and Dental applications. However, synthetically produced HA may not be stable under ionic environment, which it will unavoidably encounter during its applications. In this paper, the in vitro effects of three HA materials derived from different resources, i.e. commercial HA (HAC), synthesised HA from pure chemicals (HAS) and synthesised HA from kapur sireh; derived traditionally from natural limestone (HAK), were studied. The HA disc samples were prepared and immersed in simulated body fluid (SBF) for 31-day period. The evaluation conducted focuses on the changes of the pH and the Calcium ion (Ca-ion) and Phosphate ion (P-ion) concentrations in the SBF solution, as well as the XRD and SEM data representing the reactions on the HA materials. From the XRD, it was found that HAK has the smallest crystallite sizes, which in turn affect the pH of the SBF during immersion. The Ca and P-ion concentrations generally decrease over time at different rates for different HA. Upon 1-day immersion in SBF, apatite growth was observed onto all three surfaces, which became more pronounced after 3-day immersion. However, the appetites formed were observed to be different in shapes and sizes. The reasons for the difference in the apatite-crystals and their subsequent effects on cells are still being investigated.
    Matched MeSH terms: Bone Substitutes/chemical synthesis*
  4. Suzina AH, Azlina A, Shamsuria O, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:105-6.
    PMID: 15468840
    Mutagenicity of CORAGRAF (natural coral) and REKAGRAF (hydroxyapatite) was tested in Ames test with and without an external metabolic activation system (S9). The test revealed no mutagenic activity of both locally produced osseous substitutes.
    Matched MeSH terms: Bone Substitutes/toxicity*
  5. Hollister SJ, Lin CY, Lin CY, Schek RD, Taboas JM, Flanagan CL, et al.
    Med J Malaysia, 2004 May;59 Suppl B:131-2.
    PMID: 15468853
    Matched MeSH terms: Bone Substitutes*
  6. Kokubo T
    Med J Malaysia, 2004 May;59 Suppl B:91-2.
    PMID: 15468833
    Metallic materials implanted into bone defects are generally encapsulated by a fibrous tissue. Some metallic materials such as titanium and tantalum, however, have been revealed to bond to the living bone without forming the fibrous tissue, when they were subjected to NaOH solution and heat treatments. Thus treated metals form bone tissue around them even in muscle, when they take a porous form. This kind of osteoconductive and osteoinductive properties are attributed to sodium titanate or tantalate layer on their surfaces formed by the NaOH and heat treatments. These layers induce the deposition of bonelike apatite on the surface of the metals in the living body. This kind of bioactive metals are useful as bone substitutes even highly loaded portions, such as hip joint, spine and tooth root.
    Matched MeSH terms: Bone Substitutes/chemical synthesis*
  7. Yatongchai C, Placek LM, Curran DJ, Towler MR, Wren AW
    J Biomater Appl, 2015 Nov;30(5):495-511.
    PMID: 26116020 DOI: 10.1177/0885328215592866
    Hydroxyapatite (Ca10(PO4)6(OH)2) is widely investigated as an implantable material for hard tissue restoration due to its osteoconductive properties. However, hydroxyapatite in bulk form is limited as its mechanical properties are insufficient for load-bearing orthopedic applications. Attempts have been made to improve the mechanical properties of hydroxyapatite, by incorporating ceramic fillers, but the resultant composite materials require high sintering temperatures to facilitate densification, leading to the decomposition of hydroxyapatite into tricalcium phosphate, tetra-calcium phosphate and CaO phases. One method of improving the properties of hydroxyapatite is to incorporate bioactive glass particles as a second phase. These typically have lower softening points which could possibly facilitate sintering at lower temperatures. In this work, a bioactive glass (SiO2-CaO-ZnO-Na2O-TiO2) is incorporated (10, 20 and 30 wt%) into hydroxyapatite as a reinforcing phase. X-ray diffraction confirmed that no additional phases (other than hydroxyapatite) were formed at a sintering temperature of 560 ℃ with up to 30 wt% glass addition. The addition of the glass phase increased the % crystallinity and the relative density of the composites. The biaxial flexural strength increased to 36 MPa with glass addition, and there was no significant change in hardness as a function of maturation. The pH of the incubation media increased to pH 10 or 11 through glass addition, and ion release profiles determined that Si, Na and P were released from the composites. Calcium phosphate precipitation was encouraged in simulated body fluid with the incorporation of the bioactive glass phase, and cell culture testing in MC-3T3 osteoblasts determined that the composite materials did not significantly reduce cell viability.
    Matched MeSH terms: Bone Substitutes/chemistry*
  8. Baba Ismail YM, Wimpenny I, Bretcanu O, Dalgarno K, El Haj AJ
    J Biomed Mater Res A, 2017 Jun;105(6):1775-1785.
    PMID: 28198131 DOI: 10.1002/jbm.a.36038
    Ionic substitutions have been proposed as a tool to control the functional behavior of synthetic hydroxyapatite (HA), particularly for Bone Tissue Engineering applications. The effect of simultaneous substitution of different levels of carbonate (CO3) and silicon (Si) ions in the HA lattice was investigated. Furthermore, human bone marrow-derived mesenchymal stem cells (hMSCs) were cultured on multi-substituted HA (SiCHA) to determine if biomimetic chemical compositions were osteoconductive. Of the four different compositions investigates, SiCHA-1 (0.58 wt % Si) and SiCHA-2 (0.45 wt % Si) showed missing bands for CO3and Si using FTIR analysis, indicating competition for occupation of the phosphate site in the HA lattice; 500°C was considered the most favorable calcination temperature as: (i) the powders produced possessed a similar amount of CO3(2-8 wt %) and Si (<1.0 wt %) as present in native bone; and (ii) there was a minimal loss of CO3and Si from the HA structure to the surroundings during calcination. Higher Si content in SiCHA-1 led to lower cell viability and at most hindered proliferation, but no toxicity effect occurred. While, lower Si content in SiCHA-2 showed the highest ALP/DNA ratio after 21 days culture with hMSCs, indicating that the powder may stimulate osteogenic behavior to a greater extent than other powders. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1775-1785, 2017.
    Matched MeSH terms: Bone Substitutes/chemistry*
  9. Kouhi M, Jayarama Reddy V, Ramakrishna S
    Appl Biochem Biotechnol, 2019 Jun;188(2):357-368.
    PMID: 30456599 DOI: 10.1007/s12010-018-2922-0
    Bioceramic nanoparticles with high specific surface area often tend to agglomerate in the polymer matrix, which results in undesirable mechanical properties of the composites and poor cell spreading and attachment. In the present work, bredigite (BR) nanoparticles were modified with an organosilane coupling agent, 3-glycidoxypropyltrimethoxysilane (GPTMS), to enhance its dispersibility in the polymer matrix. The polyhydroxybutyrate-co-hydroxyvaletare (PHBV) nanofibrous scaffolds containing either bredigite or GPTMS-modified bredigite (G-BR) nanoparticles were fabricated using electrospinning technique and characterized using scanning electron microscopy, transmission electron microscopy, and tensile strength. Results demonstrated that modification of bredigite was effective in enhancing nanoparticle dispersion in the PHBV matrix. PHBV/G-BR scaffold showed improved mechanical properties compared to PHBV and PHBV/BR, especially at the higher concentration of nanoparticles. In vitro bioactivity assay performed in the simulated body fluid (SBF) indicated that composite PHBV scaffolds were able to induce the formation of apatite deposits after incubation in SBF. From the results of in vitro biological assay, it is concluded that the synergetic effect of BR and GPTMS provided an enhanced hFob cells attachment and proliferation. The developed PHBV/G-BR nanofibrous scaffolds may be considered for application in bone tissue engineering.
    Matched MeSH terms: Bone Substitutes/chemistry*
  10. Ballouze R, Marahat MH, Mohamad S, Saidin NA, Kasim SR, Ooi JP
    J Biomed Mater Res B Appl Biomater, 2021 Oct;109(10):1426-1435.
    PMID: 33484103 DOI: 10.1002/jbm.b.34802
    Autologous bone grafting remains the gold standard for almost all bone void-filling orthopedic surgery. However, autologous bone grafting has several limitations, thus scientists are trying to identify an ideal synthetic material as an alternative bone graft substitute. Magnesium-doped biphasic calcium phosphate (Mg-BCP) has recently been in the spotlight and is considered to be a potential bone substitute. The Mg-BCP is a mixture of two bioceramics, that is, hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), doped with Mg2+ , and can be synthesized through chemical wet-precipitation, sol-gel, single diffusion gel, and solid state reactions. Regardless of the synthesis routes, it is found that the Mg2+ preferentially accommodates in β-TCP lattice instead of the HA lattice. The addition of Mg2+ to BCP leads to desirable physicochemical properties and is found to enhance the apatite-forming ability as compared to pristine BCP. In vitro results suggest that the Mg-BCP is bioactive and not toxic to cells. Implantation of Mg-BCP in in vivo models further affirmed its biocompatibility and efficacy as a bone substitute. However, like the other bioceramics, the optimum physicochemical properties of the Mg-BCP scaffold have yet to be determined. Further investigations are required regarding Mg-BCP applications in bone tissue engineering.
    Matched MeSH terms: Bone Substitutes/chemistry*
  11. Chao CY, Mani MP, Jaganathan SK
    PLoS One, 2018;13(10):e0205699.
    PMID: 30372449 DOI: 10.1371/journal.pone.0205699
    Essential oils play an important role in reducing the pain and inflammation caused by bone fracture.In this study, a scaffold was electrospun based on polyurethane (PU), grape seed oil, honey and propolis for bone tissue-engineering applications. The fiber diameter of the electrospun PU/grape seed oil scaffold and PU/grape seed oil/honey/propolis scaffold were observed to be reduced compared to the pristine PU control. FTIR analysis revealed the existence of grape seed oil, honey and propolis in PU identified by CH band peak shift and also hydrogen bond formation. The contact angle of PU/grape seed oil scaffold was found to increase owing to hydrophobic nature and the contact angle for the PU/grape seed/honey oil/propolis scaffold were decreased because of hydrophilic nature. Further, the prepared PU/grape seed oil and PU/grape seed oil/honey/propolis scaffold showed enhanced thermal stability and reduction in surface roughness than the control as revealed in thermogravimetric analysis (TGA) and atomic force microscopy (AFM) analysis. Further, the developed nanocomposite scaffold displayed delayed blood clotting time than the pristine PU in the activated prothrombin time (APTT) and partial thromboplastin time (PT) assay. The hemolytic assay and cytocompatibility studies revealed that the electrospun PU/grape seed oil and PU/grape seed oil/honey/propolis scaffold possess non-toxic behaviour to red blood cells (RBC) and human fibroblast cells (HDF) cells indicating better blood compatibility and cell viability rates. Hence, the newly developed electrospun nanofibrous composite scaffold with desirable characteristics might be used as an alternative candidate for bone tissue engineering applications.
    Matched MeSH terms: Bone Substitutes/toxicity; Bone Substitutes/chemistry*
  12. Ali F, Halim AS, Najihah SZ, Ibrahim M, Abdullah J
    J Craniomaxillofac Surg, 2005 Oct;33(5):326-30.
    PMID: 16125400
    A vascularized outer-table calvarial bone graft was used for repairing a Posnick type 2 traumatic orbito-frontal bone defect supported by the use of a calcium-based putty (Allomatrix) in a 7-year-old girl. Gaps between the donor and recipient sites were filled with Allomatrix containing demineralized bone matrix particles. Four years later there was a good cosmetic result using an artificial left eye.
    Matched MeSH terms: Bone Substitutes/therapeutic use*
  13. Sulaiman SB, Keong TK, Cheng CH, Saim AB, Idrus RB
    Indian J Med Res, 2013 Jun;137(6):1093-101.
    PMID: 23852290
    Various materials have been used as scaffolds to suit different demands in tissue engineering. One of the most important criteria is that the scaffold must be biocompatible. This study was carried out to investigate the potential of HA or TCP/HA scaffold seeded with osteogenic induced sheep marrow cells (SMCs) for bone tissue engineering.
    Matched MeSH terms: Bone Substitutes/chemistry*
  14. Hikmawati D, Maulida HN, Putra AP, Budiatin AS, Syahrom A
    Int J Biomater, 2019;2019:7179243.
    PMID: 31341479 DOI: 10.1155/2019/7179243
    The most effective treatment for spinal tuberculosis was by eliminating the tuberculosis bacteria and replacing the infected bone with the bone graft to induce the healing process. This study aims to synthesize and characterize nanohydroxyapatite-gelatin-based injectable bone substitute (IBS) with addition of streptomycin. The IBS was synthesized by mixing nanohydroxyapatite and 20 w/v% gelatin with ratio of 40:60, 45:55, 50:50, 55:45, 60:40, 65:35, 70:30, and 75:25 ratio and streptomycin addition as antibiotic agent. The mixture was added by hydroxypropyl methylcellulose as suspending agent. FTIR test showed that there was a chemical reaction occurring in the mixture, between the gelatin and streptomycin. The result of injectability test showed that the highest injectability of the IBS sample was 98.64% with the setting time between 30 minutes and four hours after injection on the HA scaffold that represents the bone cavity and coat the pore scaffold. The cytotoxicity test result showed that the IBS samples were nontoxic towards BHK-21 fibroblast cells and human hepatocyte cells since the viability cell was more than 50% with significant difference (p-value<0.05). The acidity of the IBS was stable and it was sensitive towards Staphylococcus aureus with significantly difference (p-value<0.05). The streptomycin release test showed that the streptomycin could be released from the IBS-injected bone scaffold with release of 2.5% after 4 hours. All the results mentioned showed that IBS was suitable as a candidate to be used in spinal tuberculosis case.
    Matched MeSH terms: Bone Substitutes
  15. Saravanan P, Ramakrishnan T, Ambalavanan N, Emmadi P, John TL
    J Oral Implantol, 2013 Aug;39(4):455-62.
    PMID: 23964779 DOI: 10.1563/AAID-JOI-D-10-00211
    The purpose of the study was to evaluate radiologically the efficacy of guided bone regeneration using composite bone graft (autogenous bone graft and anorganic bovine bone graft [Bio-Oss]) along with resorbable collagen membrane (BioMend Extend) in the augmentation of Seibert's class I ridge defects in maxilla. Bone width was evaluated using computerized tomography at day 0 and at day 180 at 2 mm, 4 mm, and 6 mm from the crest. There was a statistically significant increase in bone width between day 0 and day 180 at 2 mm, 4 mm, and 6 mm from the crest. The results of the study demonstrated an increase in bone width of Seibert's class I ridge defects in the maxilla of the study patients.
    Matched MeSH terms: Bone Substitutes
  16. Amin Yavari S, van der Stok J, Chai YC, Wauthle R, Tahmasebi Birgani Z, Habibovic P, et al.
    Biomaterials, 2014 Aug;35(24):6172-81.
    PMID: 24811260 DOI: 10.1016/j.biomaterials.2014.04.054
    The large surface area of highly porous titanium structures produced by additive manufacturing can be modified using biofunctionalizing surface treatments to improve the bone regeneration performance of these otherwise bioinert biomaterials. In this longitudinal study, we applied and compared three types of biofunctionalizing surface treatments, namely acid-alkali (AcAl), alkali-acid-heat treatment (AlAcH), and anodizing-heat treatment (AnH). The effects of treatments on apatite forming ability, cell attachment, cell proliferation, osteogenic gene expression, bone regeneration, biomechanical stability, and bone-biomaterial contact were evaluated using apatite forming ability test, cell culture assays, and animal experiments. It was found that AcAl and AnH work through completely different routes. While AcAl improved the apatite forming ability of as-manufactured (AsM) specimens, it did not have any positive effect on cell attachment, cell proliferation, and osteogenic gene expression. In contrast, AnH did not improve the apatite forming ability of AsM specimens but showed significantly better cell attachment, cell proliferation, and expression of osteogenic markers. The performance of AlAcH in terms of apatite forming ability and cell response was in between both extremes of AnH and AsM. AcAl resulted in significantly larger volumes of newly formed bone within the pores of the scaffold as compared to AnH. Interestingly, larger volumes of regenerated bone did not translate into improved biomechanical stability as AnH exhibited significantly better biomechanical stability as compared to AcAl suggesting that the beneficial effects of cell-nanotopography modulations somehow surpassed the benefits of improved apatite forming ability. In conclusion, the applied surface treatments have considerable effects on apatite forming ability, cell attachment, cell proliferation, and bone ingrowth of the studied biomaterials. The relationship between these properties and the bone-implant biomechanics is, however, not trivial.
    Matched MeSH terms: Bone Substitutes/pharmacology
  17. Bang LT, Ramesh S, Purbolaksono J, Long BD, Chandran H, Ramesh S, et al.
    Biomed Mater, 2015 Aug;10(4):045011.
    PMID: 26225725 DOI: 10.1088/1748-6041/10/4/045011
    Interconnected porous tricalcium phosphate ceramics are considered to be potential bone substitutes. However, insufficient mechanical properties when using tricalcium phosphate powders remain a challenge. To mitigate these issues, we have developed a new approach to produce an interconnected alpha-tricalcium phosphate (α-TCP) scaffold and to perform surface modification on the scaffold with a composite layer, which consists of hybrid carbonate apatite / poly-epsilon-caprolactone (CO3Ap/PCL) with enhanced mechanical properties and biological performance. Different CO3Ap combinations were tested to evaluate the optimal mechanical strength and in vitro cell response of the scaffold. The α-TCP scaffold coated with CO3Ap/PCL maintained a fully interconnected structure with a porosity of 80% to 86% and achieved an improved compressive strength mimicking that of cancellous bone. The addition of CO3Ap coupled with the fully interconnected microstructure of the α-TCP scaffolds coated with CO3Ap/PCL increased cell attachment, accelerated proliferation and resulted in greater alkaline phosphatase (ALP) activity. Hence, our bone substitute exhibited promising potential for applications in cancellous bone-type replacement.
    Matched MeSH terms: Bone Substitutes/chemical synthesis*
  18. Ng MH, Duski S, Tan KK, Yusof MR, Low KC, Rose IM, et al.
    Biomed Res Int, 2014;2014:345910.
    PMID: 25165699 DOI: 10.1155/2014/345910
    Calcium phosphate-based bone substitutes have not been used to repair load-bearing bone defects due to their weak mechanical property. In this study, we reevaluated the functional outcomes of combining ceramic block with osteogenic-induced mesenchymal stem cells and platelet-rich plasma (TEB) to repair critical-sized segmental tibial defect. Comparisons were made with fresh marrow-impregnated ceramic block (MIC) and partially demineralized allogeneic bone block (ALLO). Six New Zealand White female rabbits were used in each study group and three rabbits with no implants were used as negative controls. By Day 90, 4/6 rabbits in TEB group and 2/6 in ALLO and MIC groups resumed normal gait pattern. Union was achieved significantly faster in TEB group with a radiological score of 4.50 ± 0.78 versus ALLO (1.06 ± 0.32), MIC (1.28 ± 0.24), and negative controls (0). Histologically, TEB group scored the highest percentage of new bone (82% ± 5.1%) compared to ALLO (5% ± 2.5%) and MIC (26% ± 5.2%). Biomechanically, TEB-treated tibiae achieved the highest compressive strength (43.50 ± 12.72 MPa) compared to those treated with ALLO (15.15 ± 3.57 MPa) and MIC (23.28 ± 6.14 MPa). In conclusion, TEB can repair critical-sized segmental load-bearing bone defects and restore limb function.
    Matched MeSH terms: Bone Substitutes
  19. Toibah AR, Sopyan I, Mel M
    Med J Malaysia, 2008 Jul;63 Suppl A:83-4.
    PMID: 19024995
    The incorporation of magnesium ions into the calcium phosphate structure is of great interest for the development of artificial bone implants. This paper investigates the preparation of magnesium-doped biphasic calcium phosphate (Mg-BCP) via sol gel method at various concentrations of added Mg. The effect of calcinations temperature (ranging from 500 degrees C to 900 degrees C) and concentrations of Mg incorporated into BCP has been studied by the aid of XRD, TGA and infrared spectroscopy (IR) in transmittance mode analysis. The study indicated that the powder was pure BCP and Mg-BCP with 100% purity and high crystallinity. The results also indicated that beta-tricalcium phosphate (beta-TCP) phase can be observed when the powder was calcined at 800 degrees C and above.
    Matched MeSH terms: Bone Substitutes
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links