Displaying publications 61 - 80 of 252 in total

Abstract:
Sort:
  1. Walton C, Chang MS, Handley JM, Harbach RE, Collins FH, Baimai V, et al.
    Mol Ecol, 2000 Oct;9(10):1665-7.
    PMID: 11050564
    Matched MeSH terms: Anopheles/genetics*
  2. Jaal Z, MacDonald WW
    PMID: 1488703
    Collections of adult anopheline mosquitos were made from a cow-baited trap in nine coastal villages located along nearly 160km of northwest peninsular Malaysia. Two collections, separated by 1.5 to 6 months, were made at each site. Nearly 6,000 anophelines of 19 species were collected. The dominant species were Anopheles peditaeniatus. An. sinensis, An. subpictus and An. lesteri paraliae. Small numbers of the malaria vectors An. maculatus (at one site) and An. campestris (at four sites) were collected, but no An. sundaicus were recorded.
    Matched MeSH terms: Anopheles*
  3. Vythilingam I, Chiang GL, Mahadevan S, Eng KL, Chan ST, Singh KI
    PMID: 8362288
    A field trial was carried out to study the effect of lambdacyhalothrin on Anopheles maculatus in trap huts in Jeram Kedah, Negeri Sembilan, Malaysia. Two trap huts were built, of which one was sprayed with lambdacyhalothrin at a dosage of 25 mg ai/m2 and the other served as control. Eight collectors commenced collecting mosquitos from 1900 to 2400 hours, two each indoors and outdoors. Bioassay was also carried out in the treated and control huts to determine susceptibility of adult mosquitos to lambdacyhalothrin. In the treated hut more mosquitos were present during the pre- spraying period. Lambdacyhalothrin gave a mortality of 100% against An. maculatus for 8 months.
    Matched MeSH terms: Anopheles*
  4. Hii JL, Kan S, Foh CK, Chan MK
    Trans R Soc Trop Med Hyg, 1984;78(2):281-2.
    PMID: 6380019
    Matched MeSH terms: Anopheles/parasitology*
  5. Khoon CC
    PMID: 4023806
    Matched MeSH terms: Anopheles/parasitology*
  6. Ravi R, Rajendran D, Oh WD, Mat Rasat MS, Hamzah Z, Ishak IH, et al.
    Sci Rep, 2020 11 06;10(1):19245.
    PMID: 33159109 DOI: 10.1038/s41598-020-75054-0
    Four different tests showed the effectiveness of Azolla pinnata plant extracts against Aedes aegypti and Aedes albopictus mosquitoes. In the adulticidal test, there was a significant increase in mortality as test concentration increases and A. pinnata extracts showed LC50 and LC95 values of 2572.45 and 6100.74 ppm, respectively, against Ae. aegypti and LC50 and LC95 values of 2329.34 and 5315.86 ppm, respectively, against Ae. albopictus. The ovicidal test showed 100% eggs mortality for both species tested for all the concentrations tested at 1500 ppm, 1000 ppm, 500 ppm, 250 ppm and 125 ppm. Both tested samples of Ae. aegypti and Ae. albopictus did not lay any eggs in the plastic cups filled with the A. pinnata extract but instead opted to lay eggs in the plastic cups filled with water during the oviposition deterrence test. Similarly, the non-choice test of Ae. aegypti mosquitoes laid eggs on the sucrose solution meant for the nutrient source of the mosquitoes instead of in the plastic cup that was designed to facilitate oviposition filled with the extract. This clearly indicates the presence of bioactive compounds which are responsible in adulticidal and ovicidal activity in Aedes mosquitoes and at the same time inducing repellence towards the mosquitoes. The LC-MS results showed mainly three important chemical compounds from A. pinnata extracts such as 1-(O-alpha-D-glucopyranosyl)-(1,3R,25R)-hexacosanetriol, Pyridate and Nicotinamide N-oxide. All these chemicals have been used for various applications such as both emulsion and non-emulsion type of cosmetics, against mosquito vector such as Culex pipens and Anopheles spp. Finally, the overall view of these chemical components from A. pinnata extracts has shown the potential for developing natural product against dengue vectors.
    Matched MeSH terms: Anopheles/growth & development*
  7. Rongnopaurt P, Rodpradit P, Kongsawadworakul P, Sithiprasasna R, Linthicum KJ
    J Am Mosq Control Assoc, 2006 Jun;22(2):192-7.
    PMID: 17014059
    Anopheles (Cellia) maculatus Theobald is a major malaria vector in southern Thailand and peninsular Malaysia, and previous population genetic studies suggested that mountain ranges act as barriers to gene flow. In this study, we examine the genetic variance among 12 collections of natural populations in southern Thailand by analyzing 7 microsatellite loci. Based on analysis of molecular variance (AMOVA), three geographic populations of An. maculatus are suggested. The southern population exists in western Thailand north of 12 degrees north latitude. Mosquitoes to the south fall into two genetic populations: 1) the middle southern collections located on the west side of the Phuket mountain range between 8 degrees and 10 degrees north latitude, and 2) the southern collections located on the east of the Phuket mountain range located between approximately 6.5 degrees and 11.5 degrees north latitude. AMOVA revealed significant genetic differentiation between northern and middle southern and southern populations. The middle southern population was moderately differentiated from the southern population. Furthermore, gene flow was restricted between proximal collections located on different sides of the Phuket mountain range. Collections separated by 50 km exhibited restriction of gene flow when separated by geographic barriers, whereas greater gene flow was evident among collections 650 km apart but without geographic barriers.
    Matched MeSH terms: Anopheles/genetics*
  8. Cheong WH, Warren M, Omar AH, Mahadevan S
    Science, 1965 Dec 03;150(3701):1314-5.
    PMID: 5857000
    The mosquito Anopheles balabacensis balabacensis has been identified as a natural vector of at least two species of simian malaria in the monsoon forests of the northern Malay States. This mosquito is also a serious vector of human malaria from Viet Nam to northern Malaya. This is the first report of a mosquito which transmits both human and simian malaria in nature.
    Matched MeSH terms: Anopheles*
  9. SANDOSHAM AA, WHARTON RH, EYLES DE, WARREN M, CHEONG WH
    Med J Malaysia, 1963 Sep;18:46-51.
    PMID: 14064298
    Matched MeSH terms: Anopheles*
  10. Cheong WH, Fredericks HJ, Omar AH, Sta Maria FL
    Med J Malaya, 1968 Mar;22(3):245.
    PMID: 4234381
    Matched MeSH terms: Anopheles*
  11. Cheong WH, Omar HB, Warren M, Mahadevan S
    Med J Malaya, 1965 Sep;20(1):76.
    PMID: 4221433
    Matched MeSH terms: Anopheles*
  12. Cheong WH, Mahadevan S, Loong KP
    PMID: 373133
    Matched MeSH terms: Anopheles/parasitology
  13. RAMACHANDRAN CP, HOO CC, BIN OMARAH
    Med J Malaysia, 1964 Mar;18:193-200.
    PMID: 14157185
    Matched MeSH terms: Anopheles*
  14. WARREN M, EYLES DE, WHARTON RH, KONG OY
    Indian J Malariol, 1963 Mar;17:85-105.
    PMID: 14274297
    Matched MeSH terms: Anopheles*
  15. EYLES DE, FONG YL, DUNN FL, GUINN E, WARREN M, SANDOSHAM AA
    Am J Trop Med Hyg, 1964 Mar;13:248-55.
    PMID: 14125875
    Matched MeSH terms: Anopheles*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links