Displaying publications 61 - 66 of 66 in total

Abstract:
Sort:
  1. Arumugam ND, Ajam N, Blackall PJ, Asiah NM, Ramlan M, Maria J, et al.
    Trop Biomed, 2011 Apr;28(1):55-63.
    PMID: 21602769
    One hundred and fourteen strains of Pasteurella multocida were isolated from different domestic animals species (cattle, buffalo, sheep, goat, pig, rabbit, dog, cat), avian species (chicken, duck, turkey) and wild animals (deer, tiger, orang utan, marmoset). The serogroups of P. multocida were determined by both conventional capsular serotyping and a multiplex PCR assay targeting specific capsular genes. Based on the conventional serotyping method, the 114 strains of P. multocida were subtyped into 55 species-specific (untypeable strains) P. multocida, 15 serogroup A, 23 serogroup B and 21 serogroup D. Based on the multiplex PCR assay on the specific capsular genes associated with each serogroup, the 114 strains were further divided to 22 species-specific P. multocida (KMT1 - 460 bp), 53 serogroup A (A - 1,044 bp), 33 serogroup B (B - 760 bp) and 6 serogroup D (D - 657 bp). No serogroup E (511 bp) or F (851 bp) was detected among the Malaysian P. multocida. PCR-based typing was more discriminative and could further subtype the previously untypeable strains. Overall, there was a significant and positive correlation between both methods in serogrouping P. multocida (r = 0.7935; p<0.4893). Various serogroups of P. multocida were present among the livestock with 75% of the strains belonging to serogroups A or B. PCR serotyping was therefore a highly species-specific, sensitive and robust method for detection and differentiation of P. multocida serogroups compared to conventional serotyping. To the best of our knowledge, this is the first report from Malaysia of the application of a PCR to rapidly define the species-specific P. multocida and its serogroups as an important zoonotic pathogen in Malaysia.
    Matched MeSH terms: Animals, Domestic
  2. Vazquez-Mendoza P, Elghandour MMM, Alaba PA, Sánchez-Aparicio P, Alonso-Fresán MU, Barbabosa-Pliego A, et al.
    Microb Pathog, 2018 Jan;114:458-463.
    PMID: 29180295 DOI: 10.1016/j.micpath.2017.11.040
    Two experiments were carried out to evaluate the bactericidal impacts of Bacillus amyloliquefaciens CECT 5940 on the shedding of faecal pathogenic bacteria in dairy calves (Experiment 1) and in adults dogs (experiment 2). In the calves experiment, a completely randomized design was used to investigate the faecal bacteria profile of Holstein dairy calves fed with either pasteurized waste milk (PWM; n = 9) or a formulated non-medicated milk replacer (NMR; n = 9) for 60 d. The NMR containing sodium-butyrate and the active probiotic B. amyloliquefaciens CECT 5940. In the dogs experiment, addition of same probiotic (i.e., B. amyloliquefaciens CECT 5940) was carried out in two stages. The first stage started from day 7-37, and the second from day 44-71. The assessment of faecal score measured on day 22, 37, 42, 57, 71 and 77 to determine the texture of the stools. Calves received PWM consumed (P 
    Matched MeSH terms: Animals, Domestic
  3. Landman WJ, Schrier CC
    Tijdschr Diergeneeskd, 2004 Dec 1;129(23):782-96.
    PMID: 15624878
    Avian influenza viruses are highly infectious micro-organisms that primarily affect birds. Nevertheless, they have also been isolated from a number of mammals, including humans. Avian influenza virus can cause large economic losses to the poultry industry because of its high mortality. Although there are pathogenic variants with a low virulence and which generally cause only mild, if any, clinical symptoms, the subtypes H5 and H7 can mutate from a low to a highly virulent (pathogenic) virus and should be taken into consideration in eradication strategies. The primary source of infection for commercial poultry is direct and indirect contact with wild birds, with waterfowl forming a natural reservoir of the virus. Live-poultry markets, exotic birds, and ostriches also play a significant role in the epidemiology of avian influenza. The secondary transmission (i.e., between poultry farms) of avian influenza virus is attributed primarily to fomites and people. Airborne transmission is also important, and the virus can be spread by aerosol in humans. Diagnostic tests detect viral proteins and genes. Virus-specific antibodies can be traced by serological tests, with virus isolation and identification being complementary procedures. The number of outbreaks of avian influenza seems to be increasing - over the last 5 years outbreaks have been reported in Italy, Hong Kong, Chile, the Netherlands, South Korea, Vietnam, Japan, Thailand, Cambodia, Indonesia, Laos, China, Pakistan, United States of America, Canada, South Africa, and Malaysia. Moreover, a growing number of human cases of avian influenza, in some cases fatal, have paralleled the outbreaks in commercial poultry. There is great concern about the possibility that a new virus subtype with pandemic potential could emerge from these outbreaks. From the perspective of human health, it is essential to eradicate the virus from poultry; however, the large number of small-holdings with poultry, the lack of control experience and resources, and the international scale of transmission and infection make rapid control and long-term prevention of recurrence extremely difficult. In the Western world, the renewed interest in free-range housing carries a threat for future outbreaks. The growing ethical objections to the largescale culling of birds require a different approach to the eradication of avian influenza.
    Matched MeSH terms: Animals, Domestic
  4. Kliks MM, Palumbo NE
    Soc Sci Med, 1992 Jan;34(2):199-212.
    PMID: 1738873 DOI: 10.1016/0277-9536(92)90097-A
    The principal etiologic agent of human eosinophilic meningitis, Angiostrongylus cantonensis, was first detected in rats in Canton, China in 1933. The first human case was detected on Taiwan in 1944. Epidemic outbreaks were noted on Ponape (E. Caroline Is.) from 1944 to 1948. The disease may present as transient meningitis or a more severe disease involving the brain, spinal cord and nerve roots, with a characteristic eosinophilia of the peripheral blood and CSF. Since 1961 it has been known that human infections are usually acquired by purposeful or accidental ingestion of infective larvae in terrestrial mollusks, planaria and fresh-water crustacea. There is no effective specific treatment. The African land snail, Achatina fulica played an important role in the panpacific dispersal of the organism: it will be important in Africa in the future as well. Rats were, and will continue to be the principal agents of expansion of the parasite beyond the Indopacific area. During and just after WWII the parasite was introduced, and/or spread passively from South and Southeast Asia into the Western Pacific islands and eastward and southward through Micronesia, Melanesia, Australia and into Polynesia, sequestered in shipments of war material and facilitated by post-war commerce. In the 1950s numerous cases were identified for the first time on Sumatra, the Philippines, Taiwan, Saipan, New Caledonia, and as far east as Rarotonga and Tahiti. Then cases were detected in Vietnam, Thailand, Cambodia, Java, Sarawak, the New Hebrides, Guam and Hawaii during the 1960s. Subsequently in the Pacific Basin the disease has appeared on Okinawa, other Ryukyu islands, Honshu, Kyushu, New Britain, American Samoa and Western Samoa, Australia, Hong Kong, Bombay, India, Fiji and most recently in mainland China. The parasite in rats now occurs throughout the Indopacific Basin and littoral. Beyond the Indopacific region, the worm has been found in rodents in Madagascar (ca 1963), Cuba (1973), Egypt (1977), Puerto Rico (1984), New Orleans, Louisiana (1985) and Port Harcourt, Nigeria (1989). Human infections have now been detected in Cuba (1973), Réunion Island (1974) and Côte d'Ivoire (1979) and should be anticipated wherever infected rats of mollusks have been introduced. Caged primates became infected in zoos in Hong Kong (1978) and New Orleans and Nassau, Bahamas (1987). The use of mollusks and crustacea as famine foods, favored delicacies and medicines has resulted in numerous outbreaks and isolated infections. Economic and political instability, illicit trade, unsanitary peridomestic conditions and lack of health education promote the local occurrence and insidious global expansion of parasitic eosinophilic meningitis.(ABSTRACT TRUNCATED AT 400 WORDS)
    Matched MeSH terms: Animals, Domestic
  5. Koh FX, Kho KL, Kisomi MG, Wong LP, Bulgiba A, Tan PE, et al.
    J Med Entomol, 2018 02 28;55(2):269-276.
    PMID: 29202206 DOI: 10.1093/jme/tjx204
    Little information is available on human anaplasmosis and ehrlichiosis in Southeast Asia despite increasing reports of the detection of Anaplasma spp. and Ehrlichia spp. in the ticks. We report herein the serological findings against the tick-borne pathogens in a group of animal farm workers (n = 87) and indigenous people (n = 102) in Peninsular Malaysia. IgG antibodies against Ehrlichia chaffeensis were detected from 29.9% and 34.3% of farm workers and indigenous people, respectively, using commercial indirect immunofluorescence assays. Comparatively, only 6.9% of the indigenous people but none of the animal farm workers were seropositive to Anaplasma phagocytophilum. A polymerase chain reaction (PCR) assay targeting the 16S rRNA gene of Anaplasmataceae was used to identify Anaplastamataceae in ticks collected from various locations adjacent to the areas where the serological survey was conducted. In this study, a total of 61.5% of ticks infesting farm animals, 37.5% of ticks infesting peri-domestic animals in rural villages, 27.3% of ticks collected from wildlife animals, and 29.1% of questing ticks collected from forest vegetation were positive for Anaplasmataceae DNA. Sequence analyses of 16S rRNA gene region (238 bp) provide the identification for Anaplasma marginale, Anaplasma bovis, Anaplasma platys, A. phagocytophilum, and Anaplasma spp. closely related to Candidatus Cryptoplasma californiense in ticks. E. chaffeensis DNA was not detected from any ticks, instead, Ehrlichia sp. strain EBm52, Ehrlichia mineirensis and Candidatus Ehrlichia shimanensis are the only Ehrlichia sp. identified from cattle ticks in this study. Further investigation is required to ascertain the occurrence of zoonotic transmission of Ehrlichia and Anaplasma infections in Peninsular Malaysia.
    Matched MeSH terms: Animals, Domestic
  6. Ngui R, Lim YA, Traub R, Mahmud R, Mistam MS
    PLoS Negl Trop Dis, 2012;6(2):e1522.
    PMID: 22347515 DOI: 10.1371/journal.pntd.0001522
    Currently, information on species-specific hookworm infection is unavailable in Malaysia and is restricted worldwide due to limited application of molecular diagnostic tools. Given the importance of accurate identification of hookworms, this study was conducted as part of an ongoing molecular epidemiological investigation aimed at providing the first documented data on species-specific hookworm infection, associated risk factors and the role of domestic animals as reservoirs for hookworm infections in endemic communities of Malaysia.
    Matched MeSH terms: Animals, Domestic
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links