Methods: We applied a literature survey methodology to retrieved data from academic databases and subsequently employed a bibliometric technique to analyze the accessed records. Besides, the concise summary, sources of COVID-19 datasets, taxonomy, synthesis and analysis are presented in this study. It was found that the Convolutional Neural Network (CNN) is mainly utilized in developing COVID-19 diagnosis and prognosis tools, mostly from chest X-ray and chest CT scan images. Similarly, in this study, we performed a bibliometric analysis of machine learning-based COVID-19 related publications in the Scopus and Web of Science citation indexes. Finally, we propose a new perspective for solving the challenges identified as direction for future research. We believe the survey with bibliometric analysis can help researchers easily detect areas that require further development and identify potential collaborators.
Results: The findings of the analysis presented in this article reveal that machine learning-based COVID-19 diagnose tools received the most considerable attention from researchers. Specifically, the analyses of results show that energy and resources are more dispenses towards COVID-19 automated diagnose tools while COVID-19 drugs and vaccine development remains grossly underexploited. Besides, the machine learning-based algorithm that is predominantly utilized by researchers in developing the diagnostic tool is CNN mainly from X-rays and CT scan images.
Conclusions: The challenges hindering practical work on the application of machine learning-based technologies to fight COVID-19 and new perspective to solve the identified problems are presented in this article. Furthermore, we believed that the presented survey with bibliometric analysis could make it easier for researchers to identify areas that need further development and possibly identify potential collaborators at author, country and institutional level, with the overall aim of furthering research in the focused area of machine learning application to disease control.
Methodology: This article is devoted to perform a Systematic Literature Review (SLR) on the security and privacy issues of IoMT and their solutions by ML techniques. The recent research papers disseminated between 2010 and 2020 are selected from multiple databases and a standardized SLR method is conducted. A total of 153 papers were reviewed and a critical analysis was conducted on the selected papers. Furthermore, this review study attempts to highlight the limitation of the current methods and aims to find possible solutions to them. Thus, a detailed analysis was carried out on the selected papers through focusing on their methods, advantages, limitations, the utilized tools, and data.
Results: It was observed that ML techniques have been significantly deployed for device and network layer security. Most of the current studies improved traditional metrics while ignored performance complexity metrics in their evaluations. Their studies environments and utilized data barely represent IoMT system. Therefore, conventional ML techniques may fail if metrics such as resource complexity and power usage are not considered.
METHODS: Natural language processing (NLP) techniques were harnessed to preprocess the occupational injury narratives obtained from the US Occupational Safety and Health Administration (OSHA) from January 2015 to June 2023. The methodology involved meticulous preprocessing of textual narratives to standardize text and eliminate noise, followed by the innovative integration of Term Frequency-Inverse Document Frequency (TF-IDF) and Global Vector (GloVe) word embeddings for effective text representation. The proposed predictive model adopts a novel Bidirectional Long Short-Term Memory (Bi-LSTM) architecture and is further refined through model optimization, including random search hyperparameters and in-depth feature importance analysis. The optimized Bi-LSTM model has been compared and validated against other machine learning classifiers which are naïve Bayes, support vector machine, random forest, decision trees, and K-nearest neighbor.
RESULTS: The proposed optimized Bi-LSTM models' superior predictability, boasted an accuracy of 0.95 for hospitalization and 0.98 for amputation cases with faster model processing times. Interestingly, the feature importance analysis revealed predictive keywords related to the causal factors of occupational injuries thereby providing valuable insights to enhance model interpretability.
CONCLUSION: Our proposed optimized Bi-LSTM model offers safety and health practitioners an effective tool to empower workplace safety proactive measures, thereby contributing to business productivity and sustainability. This study lays the foundation for further exploration of predictive analytics in the occupational safety and health domain.
METHODOLOGY: Employing the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) criteria, this study highlights diverse modeling techniques shaping asset lifetime evaluation within the PdM context from 34 scholarly articles.
RESULTS: The study revealed four important findings: various PdM and DT modelling techniques, their diverse approaches, predictive outcomes, and implementation of maintenance management. These findings align with the ongoing exploration of emerging applications in healthcare, utilities (smart water management), and agriculture (smart farm). In addition, it sheds light on the critical functions of PdM and DT, emphasising their extraordinary ability to drive revolutionary change in dynamic industrial challenges. The results highlight these methodologies' flexibility and application across many industries, providing vital insights into their potential to revolutionise asset management and maintenance practice for real-time monitoring.
CONCLUSIONS: Therefore, this systematic review provides a current and essential resource for academics, practitioners, and policymakers to refine PdM strategies and expand the applicability of DT in diverse industrial sectors.