A selected active pharmaceutical ingredient must be incorporated into a cargo carrier in a particular manner so that it achieves its goal. An amalgamation of active pharmaceutical ingredients (APIs) should be conducted in such a manner that it is simple, professional, and more beneficial. Lipids/polymers that are known to be used in nanocarriers for APIs can be transformed into a vesicular formulation, which offers elegant solutions to many problems. Phospholipids with other ingredients, such as ethanol and water, form suitable vesicular carriers for many drugs, overcoming many problems related to poor bioavailability, poor solubility, etc. Ultraflexible liposomes are novel carriers and new frontiers of drug delivery for transdermal systems. Auxiliary advances in vesicular carrier research have been made, enabling polymer-coated ethanolic liposomes to avoid detection by the body's immune system-specifically, the cells of the reticuloendothelial system. Ultraflexible liposomes act as a cargo system and a nanotherapeutic approach for the transport of therapeutic drugs and bioactive agents. Various applications of liposome derivatives in different diseases are emphasized in this review.
The adsorption of dyes using 39 adsorbents (16 kinds of agro-wastes) were modeled using random forest (RF), decision tree (DT), and gradient boosting (GB) models based on 350 sets of adsorption experimental data. In addition, the correlation between variables and their importance was applied. After comprehensive feature selection analysis, five important variables were selected from nine variables. The RF with the highest accuracy (R2 = 0.9) was selected as the best model for prediction of adsorption capacity of agro-waste using the five selected variables. The results suggested that agro-waste characteristics (pore volume, surface area, agro-waste pH, and particle size) accounted for 50.7% contribution for adsorption efficiency. The pore volume and surface area are the most important influencing variables among the agro-waste characteristics, while the role of particle size was inconspicuous. The accurate ability of the developed models' prediction could significantly reduce experimental screening efforts, such as predicting the dye removal efficiency of agro-waste activated carbon according to agro-waste characteristics. The relative importance of variables could provide a right direction for better treatments of dyes in the real wastewater.
Nano-hydroxyapatite (nHA) has been widely used as an orthopedic biomaterial and vehicle for drug delivery owing to its chemical and structural similarity to bone minerals. Several studies have demonstrated that nHA based biomaterials have a potential effect for bone regeneration with very minimal to no toxicity or inflammatory response. This systematic review aims to provide an appraisal of the effectiveness of nHA as a delivery system for bone regeneration and whether the conjugation of proteins, antibiotics, or other bioactive molecules to the nHA further enhances osteogenesis in vivo. Out of 282 articles obtained from the literature search, only 14 articles met the inclusion criteria for this review. These studies showed that nHA was able to induce bone regeneration in various animal models with large or critical-sized bone defects, open fracture, or methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis. The conjugations of drugs or bioactive molecules such as bone-morphogenetic protein-2 (BMP-2), vancomycin, calcitriol, dexamethasone, and cisplatin were able to enhance the osteogenic property of nHA. Thus, nHA is a promising delivery system for a variety of compounds in promoting bone regeneration in vivo.
Composite scaffolds of hydroxyapatite (HAp) nanoparticles and bioactive glass (BG) have been applied as appropriate materials for bone tissue engineering. In this study, hydroxyapatite/bioglass cement in different ratios was successfully fabricated. To prepare HAp and HAp/BG cement, synthesized HAp and HAp/BG powder were mixed in several ratios, using different concentrations of sodium hydrogen phosphate (SP) and water as the liquid phase. The liquid to powder ratio used was 0.4 mL/g. The results showed that setting time increased with BG content in the composite. The results also showed that with the addition of bioglass to the HAp structure, the density decreased and the porosity increased. It was also found that after immersion in simulated body fluid (SBF) solution, the compressive strength of the HAp and HAp/BG cements increased with BG concentration up to 30 wt.%. SEM results showed the formation of an apatite layer in all selected samples after immersion in SBF solution. At 30 wt.% BG, greater nucleation and growth of the apatite layer were observed, resulting in higher bioactivity than pure HAp and HAp/BG in other ratios.
To reduce surface contamination and increase battery life, MoO3 nanoparticles were coated with a high-voltage (5 V) LiNi0.5Mn1.5O4 cathode material by in-situ method during the high-temperature annealing process. To avoid charging by more than 5 V, we also developed a system based on anode-limited full-cell with a negative/positive electrode (N/P) ratio of 0.9. The pristine LiNi0.5Mn1.5O4 was initially prepared by high-energy ball-mill with a solid-state reaction, followed by a precipitation reaction with a molybdenum precursor for the MoO3 coating. The typical structural and electrochemical behaviors of the materials were clearly investigated and reported. The results revealed that a sample of 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode exhibited an optimal electrochemical activity, indicating that the MoO3 nanoparticle coating layers considerably enhanced the high-rate charge-discharge profiles and cycle life performance of LiNi0.5Mn1.5O4 with a negligible capacity decay. The 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode could achieve high specific discharge capacities of 131 and 124 mAh g-1 at the rates of 1 and 10 C, respectively. In particular, the 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode retained its specific capacity (87 mAh g-1) of 80.1% after 500 cycles at a rate of 10 C. The Li4Ti5O12/LiNi0.5Mn1.5O4 full cell based on the electrochemical-cell (EL-cell) configuration was successfully assembled and tested, exhibiting excellent cycling retention of 93.4% at a 1 C rate for 100 cycles. The results suggest that the MoO3 nano-coating layer could effectively reduce side reactions at the interface of the LiNi0.5Mn1.5O4 cathode and the electrolyte, thus improving the electrochemical performance of the battery system.
The reputation of nanofluids as a convenient heat transfer media has grown in recent years. The synthesis of nanofluids is often challenging, particularly carbon-based nanofluids, due to the rapid agglomeration of the nanoparticles and the instability of the nanofluids. In this regard, surface modification and surfactant addition are potential approaches to improve the physical and thermal properties of carbon-based nanofluids that have been studied and the structural, morphological, and thermal characteristics of surface-oxidised carbon nanofibre (CNF)-based nanofluids has been characterised. Commercial CNF was first subjected to three different acid treatments to introduce surface oxygen functional groups on the CNF surface. Following the physical and thermal characterisation of the three surface-oxidised CNFs (CNF-MA, CNF-MB, and CNF-MC), including Raman spectroscopy, Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FESEM), the CNF-MB was selected as the best method to synthesise the surface-oxidised CNF-based nanofluid. A total of 40 mL of ultrapure water was used as a pure base fluid and mixed with the surface-oxidised CNF at a concentration range of 0.1-1.0 wt.%, with a fixed of 10 wt.% amount of polyvinylpyrrolidone (PVP). The thermal conductivity of CNF-based nanofluid was then characterised at different temperatures (6, 25, and 40 °C). Based on the results, surface oxidation via Method B significantly affected the extent of surface defects and effectively enhanced the group functionality on the CNF surface. Aside from the partially defective and rough surface of CNF-MB surfaces from the FESEM analysis, the presence of surface oxygen functional groups on the CNF wall was confirmed via the Raman analysis, TGA curve, and FTIR analysis. The visual sedimentation observation also showed that the surface-oxidised CNF particles remained dispersed in the nanofluid due to the weakened van der Waals interaction. The dispersion of CNF particles was improved by the presence of PVP, which further stabilised the CNF-based nanofluids. Ultimately, the thermal conductivity of the surface-oxidised CNF-based nanofluid with PVP was significantly improved with the highest enhancement percentage of 18.50, 16.84, and 19.83% at 6, 25, and 40 °C, respectively, at an optimum CNF concentration of 0.7 wt.%.
Partial filling of porous medium insert in a channel alleviates the tremendous pressure drop associated with a porous medium saturated channel, and enhances heat transfer at an optimum fraction of porous medium filling. This study pioneered an investigation into the viscous dissipative forced convective heat transfer in a parallel-plate channel, partially occupied with a porous medium at the core, under local thermal non-equilibrium condition. Solving the thermal energy equation along the Darcy-Brinkman equation, new exact temperature fields and Nusselt number are presented under symmetrical isoflux thermal boundary condition. Noteworthy is the heat flux bifurcation at the interface between the clear fluid and porous medium driven by viscous dissipation, in cases where the combined hydrodynamic resistance to fluid flow and thermal resistance to fluid conduction is considerable in low Darcy number porous medium insert. However, viscous dissipation does not affect the qualitative variation of the Nusselt number with the fraction of porous medium filling. By using Al2O3-Water nanofluid as the working fluid in a uniformly heated microchannel, partially filled with an optimum volume fraction of porous medium, the heat transfer coefficient improves as compared to utilizing water. The accompanied viscous dissipation however has a more adverse impact on the heat transfer coefficient of nanofluids with an increasing Reynolds number.
The present study reported biofabrication of flower-like SnO2 nanoparticles using Pometia pinnata leaf extract. The study focused on the physicochemical characteristics of the prepared SnO2 nanoparticles and its activity as photocatalyst and antibacterial agent. The characterization was performed by XRD, SEM, TEM, UV-DRS and XPS analyses. Photocatalytic activity of the nanoparticles was examined on bromophenol blue photooxidation; meanwhile, the antibacterial activity was evaluated against Klebsiella pneumoniae, Escherichia coli Staphylococcus aureus and Streptococcus pyogenes. XRD and XPS analyses confirmed the single tetragonal SnO2 phase. The result from SEM analysis indicates the flower like morphology of SnO2 nanoparticles, and by TEM analysis, the nanoparticles were seen to be in uniform spherical shapes with a diameter ranging from 8 to 20 nm. SnO2 nanoparticles showed significant photocatalytic activity in photooxidation of bromophenol blue as the degradation efficiency reached 99.93%, and the photocatalyst exhibited the reusability as the degradation efficiency values were insignificantly changed until the fifth cycle. Antibacterial assay indicated that the synthesized SnO2 nanoparticles exhibit an inhibition of tested bacteria and showed a potential to be applied for further environmental and medical applications.
This study, for the first time, focused on the fabrication of nonporous polyurea thin films (~200 microns) using the electrospinning method as a novel approach for coating applications. Multi-walled carbon nanotubes (MWCNTs) and hydrophilic-fumed nanosilica (HFNS) were added separately into electrospun polyurea films as nano-reinforcing fillers for the enhancement of properties. Neat polyurea films demonstrated a tensile strength of 14 MPa with an elongation of 360%. At a loading of 0.2% of MWCNTs, the highest tensile strength of 21 MPa and elongation of 402% were obtained, while the water contact angle remained almost unchanged (89°). Surface morphology analysis indicated that the production of polyurea fibers during electrospinning bonded together upon curing, leading to a nonporous film. Neat polyurea exhibited high thermal resistance with a degradation temperature of 380 °C. Upon reinforcement with 0.2% of MWCNTs and 0.4% of HFNS, it increased by ~7 °C. The storage modulus increased by 42 MPa with the addition of 0.2% of MWCNTs, implying a superior viscoelasticity of polyurea nanocomposite films. The results were benchmarked with anti-corrosive polymer coatings from the literature, revealing that the production of nonporous polyurea coatings with robust strength, elasticity, and thermal properties was achieved. Electrospun polyurea coatings are promising candidates as flexible anti-corrosive coatings for heat exchanges and electrical wires.
Despite many dedicated efforts, the fabrication of high-quality ZnO-incorporated Zinc@Silicon (Zn@Si) core-shell quantum dots (ZnSiQDs) with customized properties remains challenging. In this study, we report a new record for the brightness enhancement of ZnSiQDs prepared via a unified top-down and bottom-up strategy. The top-down approach was used to produce ZnSiQDs with uniform sizes and shapes, followed by the bottom-up method for their re-growth. The influence of various NH4OH contents (15 to 25 µL) on the morphology and optical characteristics of ZnSiQDs was investigated. The ZnSiQDs were obtained from the electrochemically etched porous Si (PSi) with Zn inclusion (ZnPSi), followed by the electropolishing and sonication in acetone. EFTEM micrographs of the samples prepared without and with NH4OH revealed the existence of spherical ZnSiQDs with a mean diameter of 1.22 to 7.4 nm, respectively. The emission spectra of the ZnSiQDs (excited by 365 nm) exhibited bright blue, green, orange-yellow, and red luminescence, indicating the uniform morphology related to the strong quantum confinement ZnSiQDs. In addition, the absorption and emission of the ZnSiQDs prepared with NH4OH were enhanced by 198.8% and 132.6%, respectively. The bandgap of the ZnSiQDs conditioned without and with NH4OH was approximately 3.6 and 2.3 eV, respectively.
Nanocomposite made by blending nano-montmorillonite (MMT) and Silicon Rubber (SR) for mechanical and tribological performance is explored in this work. Different configurations of MMT/SR nanocomposite, with 0, 0.5, 2 and 5 wt % of MMT are manufactured by two roll mixing methods. Noticeable improvement in the mechanical and tribological performance is observed, which is also justified by a morphological study of fractured and wear surfaces through SEM. Two percent of MMT loading is found to be the optimum content that shows excellent performance compared to other compositions. The performance improvement can be linked to the good interfacial interaction between the MMT and SR. Statistical modeling through ANOVA is carried out for tribological performance, which reveals the influence of load on the coefficient of friction (COF) and the influence of sliding distance on the wear rate.
The unprecedented development of perovskite-silicon (PSC-Si) tandem solar cells in the last five years has been hindered by several challenges towards industrialization, which require further research. The combination of the low cost of perovskite and legacy silicon solar cells serve as primary drivers for PSC-Si tandem solar cell improvement. For the perovskite top-cell, the utmost concern reported in the literature is perovskite instability. Hence, proposed physical loss mechanisms for intrinsic and extrinsic instability as triggering mechanisms for hysteresis, ion segregation, and trap states, along with the latest proposed mitigation strategies in terms of stability engineering, are discussed. The silicon bottom cell, being a mature technology, is currently facing bottleneck challenges to achieve power conversion efficiencies (PCE) greater than 26.7%, which requires more understanding in the context of light management and passivation technologies. Finally, for large-scale industrialization of the PSC-Si tandem solar cell, the promising silicon wafer thinning, and large-scale film deposition technologies could cause a shift and align with a more affordable and flexible roll-to-roll PSC-Si technology. Therefore, this review aims to provide deliberate guidance on critical fundamental issues and configuration factors in current PSC-Si tandem technologies towards large-scale industrialization. to meet the 2031 PSC-Si Tandem road maps market target.
This paper provides a comprehensive review of 71 previous studies on the life cycle assessment (LCA) of nanomaterials (NMs) from 2001 to 2020 (19 years). Although various studies have been carried out to assess the efficiency and potential of wastes for nanotechnology, little attention has been paid to conducting a comprehensive analysis related to the environmental performance and hotspot of NMs, based on LCA methodology. Therefore, this paper highlights and discusses LCA methodology's basis (goal and scope definition, system boundary, life cycle inventory, life cycle impact assessment, and interpretation) to insights into current practices, limitations, progress, and challenges of LCA application NMs. We found that there is still a lack of comprehensive LCA study on the environmental impacts of NMs until end-of-life stages, thereby potentially supporting misleading conclusions, in most of the previous studies reviewed. For a comprehensive evaluation of LCA of NMs, we recommend that future studies should: (1) report more detailed and transparent LCI data within NMs LCA studies; (2) consider the environmental impacts and potential risks of NMs within their whole life cycle; (3) adopt a transparent and prudent characterization model; and (4) include toxicity, uncertainty, and sensitivity assessments to analyze the exposure pathways of NMs further. Future recommendations towards improvement and harmonization of methodological for future research directions were discussed and provided. This study's findings redound to future research in the field of LCA NMs specifically, considering that the release of NMs into the environment is yet to be explored due to limited understanding of the mechanisms and pathways involved.
In this study, we theoretically investigated the effect of step gate work function on the InGaAs p-TFET device, which is formed by dual material gate (DMG). We analyzed the performance parameters of the device for low power digital and analog applications based on the gate work function difference (∆ϕS-D) of the source (ϕS) and drain (ϕD) side gate electrodes. In particular, the work function of the drain (ϕD) side gate electrodes was varied with respect to the high work function of the source side gate electrode (Pt, ϕS = 5.65 eV) to produce the step gate work function. It was found that the device performance varies with the variation of gate work function difference (∆ϕS-D) due to a change in the electric field distribution, which also changes the carrier (hole) distribution of the device. We achieved low subthreshold slope (SS) and off-state current (Ioff) of 30.89 mV/dec and 0.39 pA/µm, respectively, as well as low power dissipation, when the gate work function difference (∆ϕS-D = 1.02 eV) was high. Therefore, the device can be a potential candidate for the future low power digital applications. On the other hand, high transconductance (gm), high cut-off frequency (fT), and low output conductance (gd) of the device at low gate work function difference (∆ϕS-D = 0.61 eV) make it a viable candidate for the future low power analog applications.
Light-driven heterogeneous photocatalysis has gained great significance for generating solar fuel; the challenging charge separation process and sluggish surface catalytic reactions significantly restrict the progress of solar energy conversion using a semiconductor photocatalyst. Herein, we propose a novel and feasible strategy to incorporate dihydroxy benzene (DHB) as a conjugated monomer within the framework of urea containing CN (CNU-DHBx) to tune the electronic conductivity and charge separation due to the aromaticity of the benzene ring, which acts as an electron-donating species. Systematic characterizations such as SPV, PL, XPS, DRS, and TRPL demonstrated that the incorporation of the DHB monomer greatly enhanced the photocatalytic CO2 reduction of CN due to the enhanced charge separation and modulation of the ionic mobility. The significantly enhanced photocatalytic activity of CNU-DHB15.0 in comparison with parental CN was 85 µmol/h for CO and 19.92 µmol/h of the H2 source. It can be attributed to the electron-hole pair separation and enhance the optical adsorption due to the presence of DHB. Furthermore, this remarkable modification affected the chemical composition, bandgap, and surface area, encouraging the controlled detachment of light-produced photons and making it the ideal choice for CO2 photoreduction. Our research findings potentially offer a solution for tuning complex charge separation and catalytic reactions in photocatalysis that could practically lead to the generation of artificial photocatalysts for efficient solar energy into chemical energy conversion.
Three high-entropy Sm(Eu,Gd)Cr0.2Mn0.2Fe0.2Co0.2Ni0.2O3 perovskite solid solutions were synthesized using the usual ceramic technology. The XRD investigation at room temperature established a single-phase perovskite product. The Rietveld refinement with the FullProf computer program in the frame of the orthorhombic Pnma (No 62) space group was realized. Along with a decrease in the V unit cell volume from ~224.33 Å3 for the Sm-based sample down to ~221.52 Å3 for the Gd-based sample, an opposite tendency was observed for the unit cell parameters as the ordinal number of the rare-earth cation increased. The average grain size was in the range of 5-8 μm. Field magnetization was measured up to 30 kOe at 50 K and 300 K. The law of approach to saturation was used to determine the Ms spontaneous magnetization that nonlinearly increased from ~1.89 emu/g (Sm) up to ~17.49 emu/g (Gd) and from ~0.59 emu/g (Sm) up to ~3.16 emu/g (Gd) at 50 K and 300 K, respectively. The Mr residual magnetization and Hc coercive force were also determined, while the SQR loop squareness, k magnetic crystallographic anisotropy coefficient, and Ha anisotropy field were calculated. Temperature magnetization was measured in a field of 30 kOe. ZFC and FC magnetization curves were fixed in a field of 100 Oe. It was discovered that the Tmo magnetic ordering temperature downward-curve decreased from ~137.98 K (Sm) down to ~133.99 K (Gd). The spin glass state with ferromagnetic nanoinclusions for all the samples was observed. The average and Dmax maximum diameter of ferromagnetic nanoinclusions were calculated and they were in the range of 40-50 nm and 160-180 nm, respectively. The mechanism of magnetic state formation is discussed in terms of the effects of the A-site cation size and B-site poly-substitution on the indirect superexchange interactions.
A 3D porous graphene structure was directly induced by CO2 laser from the surface of Kapton tape (carbon source) supported by polyethylene terephthalate (PET) laminating film. A highly flexible laser-induced porous graphene (LI-PGr) electrode was then fabricated via a facile one-step method without reagent and solvent in a procedure that required no stencil mask. The method makes pattern design easy, and production cost-effective and scalable. We investigated the performance of the LI-PGr electrode for the detection of methamphetamine (MA) on household surfaces and in biological fluids. The material properties and morphology of LI-PGr were analysed by scanning electron microscopy (SEM), energy dispersive x-ray (EDX) and Raman spectroscopy. The LI-PGr electrode was used as the detector in a portable electrochemical sensor, which exhibited a linear range from 1.00 to 30.0 µg mL-1 and a detection limit of 0.31 µg mL-1. Reproducibility was good (relative standard deviation of 2.50% at 10.0 µg mL-1; n = 10) and anti-interference was excellent. The sensor showed good precision and successfully determined MA on household surfaces and in saliva samples.
This paper demonstrates carbon quantum dots (CQDs) with triangular silver nanoparticles (AgNPs) as the sensing materials of localized surface plasmon resonance (LSPR) sensors for chlorophyll detection. The CQDs and AgNPs were prepared by a one-step hydrothermal process and a direct chemical reduction process, respectively. FTIR analysis shows that a CQD consists of NH2, OH, and COOH functional groups. The appearance of C=O and NH2 at 399.5 eV and 529.6 eV in XPS analysis indicates that functional groups are available for adsorption sites for chlorophyll interaction. A AgNP-CQD composite was coated on the glass slide surface using (3-aminopropyl) triethoxysilane (APTES) as a coupling agent and acted as the active sensing layer for chlorophyll detection. In LSPR sensing, the linear response detection for AgNP-CQD demonstrates R2 = 0.9581 and a sensitivity of 0.80 nm ppm-1, with a detection limit of 4.71 ppm ranging from 0.2 to 10.0 ppm. Meanwhile, a AgNP shows a linear response of R2 = 0.1541 and a sensitivity of 0.25 nm ppm-1, with the detection limit of 52.76 ppm upon exposure to chlorophyll. Based on these results, the AgNP-CQD composite shows a better linearity response and a higher sensitivity than bare AgNPs when exposed to chlorophyll, highlighting the potential of AgNP-CQD as a sensing material in this study.
Polyhydroxyalkanoates (PHAs) are natural polymers produced under specific conditions by certain organisms, primarily bacteria, as a source of energy. These up-and-coming bioplastics are an undeniable asset in enhancing the effectiveness of drug delivery systems, which demand characteristics like non-immunogenicity, a sustained and controlled drug release, targeted delivery, as well as a high drug loading capacity. Given their biocompatibility, biodegradability, modifiability, and compatibility with hydrophobic drugs, PHAs often provide a superior alternative to free drug therapy or treatments using other polymeric nanocarriers. The many formulation methods of existing PHA nanocarriers, such as emulsion solvent evaporation, nanoprecipitation, dialysis, and in situ polymerization, are explained in this review. Due to their flexibility that allows for a vessel tailormade to its intended application, PHA nanocarriers have found their place in diverse therapy options like anticancer and anti-infective treatments, which are among the applications of PHA nanocarriers discussed in this article. Despite their many positive attributes, the advancement of PHA nanocarriers to clinical trials of drug delivery applications has been stunted due to the polymers' natural hydrophobicity, controversial production materials, and high production costs, among others. These challenges are explored in this review, alongside their existing solutions and alternatives.
Conventional delivery of anticancer drugs is less effective due to pharmacological drawbacks such as lack of aqueous solubility and poor cellular accumulation. This study reports the increased drug loading, therapeutic delivery, and cellular accumulation of silibinin (SLB), a poorly water-soluble phenolic compound using a hydrophobically-modified chitosan nanoparticle (pCNP) system. In this study, chitosan nanoparticles were hydrophobically-modified to confer a palmitoyl group as confirmed by 2,4,6-Trinitrobenzenesulfonic acid (TNBS) assay. Physicochemical features of the nanoparticles were studied using the TNBS assay, and Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analyses. The FTIR profile and electron microscopy correlated the successful formation of pCNP and pCNP-SLB as nano-sized particles, while Dynamic Light Scattering (DLS) and Field Emission-Scanning Electron Microscopy (FESEM) results exhibited an expansion in size between pCNP and pCNP-SLB to accommodate the drug within its particle core. To evaluate the cytotoxicity of the nanoparticles, a Methylthiazolyldiphenyl-tetrazolium bromide (MTT) cytotoxicity assay was subsequently performed using the A549 lung cancer cell line. Cytotoxicity assays exhibited an enhanced efficacy of SLB when delivered by CNP and pCNP. Interestingly, controlled release delivery of SLB was achieved using the pCNP-SLB system, conferring higher cytotoxic effects and lower IC50 values in 72-h treatments compared to CNP-SLB, which was attributed to the hydrophobic modification of the CNP system.