The adsorption behavior of chitosan (CS) beads modified with 3-aminopropyl triethoxysilane (APTES) for the removal of reactive blue 4 (RB4) in batch studies has been investigated. The effects of modification conditions, such as the APTES concentration, temperature and reaction time on RB4 removal, were studied. The adsorbent prepared at a concentration of 2 wt% APTES for 8h at 50 °C was the most effective one for RB4 adsorption. The adsorption capacity of modified CS beads (433.77 mg/g) was 1.37 times higher than that of unmodified CS beads (317.23 mg/g). The isotherm data are adequately described by a Freundlich model, and the kinetic study revealed that the pseudo-second-order rate model was in better agreement with the experimental data. The negative values of the thermodynamic parameters, including ΔG° (-2.28 and -4.70 kJ/mol at 30 ± 2 °C), ΔH° (-172.18 and -43.82 kJ/mol) and ΔS° (-560.71 and -129.08 J/mol K) for CS beads and APTES modified beads, respectively, suggest that RB4 adsorption is a spontaneous and exothermic process.
Acetone soluble oil palm empty fruit bunch cellulose acetate (OPEFB-CA) of DS 2.52 has been successfully synthesized in a one-step heterogeneous acetylation of OPEFB cellulose without necessitating the hydrolysis stage. This has only been made possible by the mathematical modeling of the acetylation process by manipulating the variables of reaction time and acetic anhydride/cellulose ratio (RR). The obtained model was verified by experimental data with an error of less than 2.5%. NMR analysis showed that the distribution of the acetyl moiety among the three OH groups of cellulose indicates a preference at the C6 position, followed by C3 and C2. XRD revealed that OPEFB-CA is highly amorphous with a degree of crystallinity estimated to be ca. 6.41% as determined from DSC. The OPEFB-CA films exhibited good mechanical properties being their tensile strength and Young's modulus higher than those of the commercial CA.
Composite sago starch-based system was developed and characterized with the aim to find an alternative to gelatin in the processing of pharmaceutical capsules. Dually modified (Hydrolyzed-Hydroxypropylated) sago starches were combined with κ-carrageenan (0.25, 0.5, 0.75, and 1%). The rheological properties of the proposed composite system were measured and compared with gelatin as reference material. Results show that combination of HHSS12 (Hydrolysed-hydroxypropylated sago starch at 12h) with 0.5% κ-carrageenan was comparable to gelatin rheological behavior in pharmaceutical capsule processing. The solution viscosity at 50 °C and sol-gel transition of the proposed composite system were comparable to those of gelatin. The viscoelastic moduli (G' and G") for the proposed system were lower than those of gelatin. These results illustrate that by manipulation of the constituents of sago starch-based composite system, a suitable alternative to gelatin can be produced with comparable properties and this could find potential application in pharmaceutical capsule industry.
Graft copolymerisation of methyl methacrylate (MMA) onto Agave angustifolia was conducted with ceric ammonium nitrate (CAN) as the redox initiator. The maximum grafting efficiency was observed at CAN and MMA concentrations of 0.91 × 10(-3) and 5.63 × 10(-2)M, respectively, at 45°C for 3h reaction time. Four characteristic peaks at 2995, 1738, 1440, and 845 cm(-1), attributed to PMMA, were found in the IR spectrum of grafted cellulose. The crystallinity index dropped from 0.74 to 0.46, while the thermal stability improved upon grafting. The water contact angle increased with grafting yield, indicating increased hydrophobicity of cellulose. SEM images showed the grafted cellulose to be enlarged and rougher. The changes in the physical nature of PMMA-grafted cellulose can be attributed to the PMMA grafting in the amorphous regions of cellulose, causing it to expand at the expense of the crystalline component.
In this study cellulose nanocrystals were isolated from oil palm trunk (Elaeis guineensis) using acid hydrolysis method. The morphology and size of the nanocrystals were characterized using scanning electron microscopy and transmission electron microscopy. The results showed that the nanocrystals isolated from raw oil palm trunk (OPT) fibers and hot water treated OPT fibers had an average diameter of 7.67 nm and 7.97 nm and length of 397.03 nm and 361.70 nm, respectively. Fourier Transform Infrared spectroscopy indicated that lignin and hemicellulose contents decreased. It seems that lignin was completely removed from the samples during chemical treatment. Thermogravimetric analysis demonstrated that cellulose nanocrystals after acid hydrolysis had higher thermal stability compared to the raw and hot water treated OPT fibers. The X-ray diffraction analysis increased crystallinity of the samples due to chemical treatment. The crystalline nature of the isolated nanocrystals from raw and hot water treated OPT ranged from 68 to 70%.
Bleached kenaf core pulps (BKC) were hydrolyzed in H2SO4 (0.5M) at different time (0min to 90min) at room temperature. After the hydrolysis process, the viscosity average molecular weight (Mŋ) for BKC sample has reduced from 14.5×10(4) to 2.55×10(4). The hydrolyzed BKC was then dissolved in NaOH:urea:water and in LiOH:urea:water mixed solvent at the ratio of 7:12:81 and 4.6:15:80.4, respectively. The increased in hydrolysis time has decreased Mŋ of cellulose leading to easy dissolution process. Higher porosity and transparency with lower crystallinity index (CrI) of regenerated membrane produced can be achieved as the Mŋ reduced. The properties of membrane were observed through FESEM, UV-vis spectrophotometer and XRD. This study has proven that acid hydrolysis has reduced the Mŋ of cellulose, thus, enhanced the properties of regenerated membrane produced with assisted by alkaline/urea system.
The aim of this study is to investigate the technical feasibility of converting macroalgae cellulosic residue (MCR) into bioethanol. An attempt was made to present a novel, environmental friendly and economical pretreatment process that enhances enzymatic conversion of MCR to sugars using Dowex (TM) Dr-G8 as catalyst. The optimum yield of glucose reached 99.8% under the optimal condition for solid acid pretreatment (10%, w/v biomass loading, 4%, w/v catalyst loading, 30min, 120°C) followed by enzymatic hydrolysis (45FPU/g of cellulase, 52CBU/g of β-glucosidase, 50°C, pH 4.8, 30h). The yield of sugar obtained was found more superior than conventional pretreatment process using H2SO4 and NaOH. Biomass loading for the subsequent simultaneous saccharification and fermentation (SSF) of the pretreated MCR was then optimized, giving an optimum bioethanol yield of 81.5%. The catalyst was separated and reused for six times, with only a slight drop in glucose yield.
Biopolymer electrolytes containing corn starch, lithium hexafluorophosphate (LiPF6) and ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) are prepared by solution casting technique. Temperature dependence-ionic conductivity studies reveal Vogel-Tamman-Fulcher (VTF) relationship which is associated with free volume theory. Ionic liquid-based biopolymer electrolytes show lower glass transition temperature (Tg) than ionic liquid-free biopolymer electrolyte. X-ray diffraction (XRD) studies demonstrate higher amorphous region of ionic liquid-added biopolymer electrolytes. In addition, the potential stability window of the biopolymer electrolyte becomes wider and stable up to 2.9V. Conclusively, the fabricated electric double layer capacitor (EDLC) shows improved electrochemical performance upon addition of ionic liquid into the biopolymer electrolyte. The specific capacitance of EDLC based on ionic liquid-added polymer electrolyte is relatively higher than that of ionic liquid-free polymer electrolyte as depicted in cyclic voltammogram.
Novel bio-based polyurethane (PU) nanocomposites composed of cellulose nanofiller extracted from the rachis of date palm tree and polycaprolactone (PCL) diol based PU were prepared by casting/evaporation. Two types of nanofiber were used: cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs). The mechanical and thermal properties of the nanocomposite films were studied by DMA, DSC, and tensile tests and the morphology was investigated by SEM. Bionanocomposites presented good mechanical properties in comparison to neat PU. While comparing both nanofillers, the improvement in mechanical and thermal properties was more pronounced for the nanocomposites based on CNF which could be explained, not only by the higher aspect ratio of CNF, but also by their better dispersion in the PU matrix. Calculation of the solubility parameters of the nanofiller surface polymers and of the PU segments portend a better interfacial adhesion for CNF based nanocomposites compared to CNC.
In this work, nanocomposite ultrafiltration (UF) membranes were synthesized through addition of different quantities of amino-functionalized nanocrystalline cellulose (NCs) in order to improve membrane anti-fouling resistance against oil depositions. The characterization results demonstrated that the overall porosity and hydrophilicity of the membranes were improved significantly upon addition of NCs despite a decrease in the pore size of nanocomposite membranes. The UF performance results showed that the nanocomposite membrane incorporated with 1 wt% NCs achieved an optimal water flux improvement, i.e., approximately 43% higher than the pristine membrane. Such nanocomposite membrane also exhibited promising oil rejection (>98.2%) and excellent water flux recovery rate of ˜98% and ˜85% after one and four cycles of treating 250-ppm oil-in-water emulsion solution, respectively. The desirable anti-fouling properties of nanocomposite membrane can be attributed to the existence of hydrophilic functional groups (-OH) on the surface of membrane stemming from addition of NCs that renders the membrane less vulnerable to fouling during oil-in-water emulsion treatment.
TEMPO-oxidize nanocellulose (TONC) suspension has been obtained from total chlorine free (TCF) oil palm empty-fruit-bunches (OPEFB) pulp using 4-acetamido-TEMPO (2,2,6,6-tetramethyl piperidin-1-oxyl) mediated oxidation with sodium hypochlorite and sodium bromide in water at 25 °C and pH 10. TONC suspension with varied content from 0.5 to 6% (w/w) reinforced polyvinyl alcohol (PVA) polymer based nanocomposite films were prepared by the casting method. The structural interaction between the TONC and PVA was characterized by the Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the 4% (w/w) TONC content reinforced nanocomposite exhibited the highest tensile strength and modulus with an increase of 122% and 291% respectively, compared to PVA while the elongation at break decreased about 42.7%. Thermal stability of PVA based nanocomposite films was improved after incorporation of TONC. Incorporation of TONC in PVA film increases its crystallinity due to strongly linking between the hydroxyl groups of materials however considerable decreases beyond 2 wt% loading are observed. TONC incorporation beyond 2 wt% also reduces the melting temperature peaks and enthalpy of nanocomposite films. FT-IR spectra, NMR and SEM indicate that there is interaction between the TONC and PVA.
The chitosan/polyvinyl Alcohol/zeolite electrospun composite nanofibrous membrane was fabricated for adsorption of methyl orange. The EDX, TGA and tensile test were carried out for the characterization of the membrane. The Young's Modulus of the nanofibrous membranes increased by more than 100% with the addition of zeolite to chitosan/PVA. The batch adsorption tests were conducted by varying the initial concentration of methyl orange, contact time and pH of the dye solution. UV-vis results showed that most of the dye was adsorbed within 6 min. An adsorption kinetic study was carried out using the pseudo-second-order kinetic model, Lagergren-first-order model and intra particle diffusion model. The adsorption kinetics obeyed the Pseudo second order model. The adsorption mechanism was analyzed using the Langmuir and Freundlich isotherm model. The experimental data fits well with the Freundlich model. The adsorption capacity of the membrane was 153 mg/g. Adsorption capacity was decreased with increasing pH value. The resulting nanofiber became less active over methyl orange after several runs.
This review outlines new developments in the biomedical applications of environmentally friendly ('green') chitosan and chitosan-blend electrospun nanofibers. In recent years, research in functionalized nanofibers has contributed to the development of new drug delivery systems and improved scaffolds for regenerative medicine, which is currently one of the most rapidly growing fields in all of the life sciences. Chitosan is a biopolymer with non-toxic, antibacterial, biodegradable and biocompatible properties. Due to these properties, they are widely applied for biomedical applications such as drug delivery, tissue engineering scaffolds, wound dressings, and antibacterial coatings. Electrospinning is a novel technique for chitosan nanofiber fabrication. These nanofibers can be used in unique applications in biomedical fields due to their high surface area and porosity. The present work reviews recent reports on the biomedical applications of chitosan-based nanofibers in detail.
Designing environmentally friendly materials from natural resources represents a great challenge in the last decade. However, the lack of fundamental knowledge in the processing of the raw materials to fabricate the composites structure is still a major challenge for potential applications. Natural fibers extracted from plants are receiving more attention from researchers, scientists and academics due to their use in polymer composites and also their environmentally friendly nature and sustainability. The natural fiber features depend on the preparation and processing of the fibers. Natural plant fibers are extracted either by mechanical retting, dew retting and/or water retting processes. The natural fibers characteristics could be improved by suitable chemicals and surface treatments. This survey proposes a detailed review of the different types of retting processes, chemical and surface treatments and characterization techniques for natural fibers. We summarize major findings from the literature and the treatment effects on the properties of the natural fibers are being highlighted.
Natural polymer guar gum has one of the highest viscosities in water solution and hence, these are significantly used in pharmaceutical applications. Guar gum inter-connected micelles as a new carrier has been developed for poor water soluble rifampicin drug. The hydrogel inter-connected micelle core was formulated as a hydrophilic inner and hydrophobic outer core by using guar gum/chitosan/polycaprolactone and the carrier interaction with rifampicin was confirmed by FT-IR. The morphological observations were carried out through TEM, SEM and AFM analysis. The encapsulation efficiency and in-vitro drug release behavior of prepared hydrogel based micelle system was analyzed by UV-vis spectrometry. The anti-bacterial activity against K. pneumoniae and S. aureus was studied by observing their ruptured surface by SEM. The cytotoxicity study reveals that the pure polymeric system has no toxic effect whereas drug loaded ones showed superior activity against THP-1 cells. From the cell apoptosis analyses, the apoptosis was carried out in a time dependent manner. The cell uptake behavior was also observed in THP-1 cells which indicate that the hydrogel based micelle system is an excellent material for the mucoadhesive on intracellular alveolar macrophage treatment.
Natural polymer-based hydrogels are of interest to health care professionals as wound dressings owing to their ability to absorb exudates and provide hydration for healing. The aims of this study were to develop and characterize bacterial cellulose/acrylic acid (BC/AA) hydrogels synthesized by electron beam irradiation and investigate its wound healing potential in an animal model. The BC/AA hydrogels were characterized by SEM, tensile strength, water absorptivity, and water vapor transmission rate (WVTR). The cytotoxicity of the hydrogels was investigated in L929 cells. Skin irritation and wound healing properties were evaluated in Sprague-Dawley rats. BC/AA hydrogels had a macroporous network structure, high swelling ratio (4000-6000% at 24h), and high WVTR (2175-2280 g/m(2)/day). The hydrogels were non-toxic in the cell viability assay. In vivo experiments indicated that hydrogels promoted faster wound-healing, enhanced epithelialization, and accelerated fibroblast proliferation compared to that in the control group. These results suggest that BC/AA hydrogels are promising materials for burn dressings.
A novel nano-bio composite polypyrrole (PPy)/kappa-carrageenan(KC) was fabricated and characterized for application as a cathode catalyst in a microbial fuel cell (MFC). High resolution SEM and TEM verified the bud-like shape and uniform distribution of the PPy in the KC matrix. X-ray diffraction (XRD) has approved the amorphous structure of the PPy/KC as well. The PPy/KC nano-bio composites were then studied as an electrode material, due to their oxygen reduction reaction (ORR) ability as the cathode catalyst in the MFC and the results were compared with platinum (Pt) as the most common cathode catalyst. The produced power density of the PPy/KC was 72.1 mW/m(2) while it was 46.8 mW/m(2) and 28.8 mW/m(2) for KC and PPy individually. The efficiency of the PPy/KC electrode system is slightly lower than a Pt electrode (79.9 mW/m(2)) but due to the high cost of Pt electrodes, the PPy/KC electrode system has potential to be an alternative electrode system for MFCs.
In this study, a novel fibrous membrane of hydroxyethyl cellulose (HEC)/poly(vinyl alcohol) blend was successfully fabricated by electrospinning technique and characterized. The concentration of HEC (5%) with PVA (15%) was optimized, blended in different ratios (30-50%) and electrospun to get smooth nanofibers. Nanofibrous membranes were made water insoluble by chemically cross-linking by glutaraldehyde and used as scaffolds for the skin tissue engineering. The microstructure, morphology, mechanical and thermal properties of the blended HEC/PVA nanofibrous scaffolds were characterized by scanning electron microscope, Fourier transform infrared spectroscopy, differential scanning colorimetry, universal testing machine and thermogravimetric analysis. Cytotoxicity studies on these nanofibrous scaffolds were carried out using human melanoma cells by the MTT assays. The cells were able to attach and spread in the nanofibrous scaffolds as shown by the SEM images. These preliminary results show that these nanofibrous scaffolds that supports cell adhesion and proliferation is promising for skin tissue engineering.
Chitin-encapsulated cadmium sulfide quantum dots (CdS@CTN QDs) were successfully synthesized from chitin and Cd(NO3)2 precursor using the colloidal chemistry method, toward the development of biocompatible and biodegradable QDs for biomedical applications. CdS@CTN QDs exhibited the nanocrystalline cubic CdS encapsulated by α-chitin. The average particle size of CdS@CTN QDs was estimated using empirical Henglein model to be 3.9 nm, while their crystallite size was predicted using Scherrer equation to be 4.3 nm, slightly larger compared to 3-mercaptopropionic acid-capped CdS QDs (3.2 and 3.6 nm, respectively). The mechanism of formation was interpreted based on the spectroscopic data and X-ray crystal structures of CdS@CTN QDs fabricated at different pH values and mass ratios of chitin to Cd(NO3)2 precursor. As an important step to explore potential biomolecular and biological applications of CdS@CTN QDs, their antibacterial activities were tested against four different bacterial strains; i.e. Escherichia coli, Bacillus subtillus, Staphylococcus aureus and Pseudomonas aeruginosa.
A large amount of wastewater is typically discharged into water bodies and has extremely harmful effects to aquatic environments. The removal of heavy metals from water bodies is necessary for the safe consumption of water and human activities. The demand for seafood has considerably increased, and millions of tons of crustacean waste are discarded every year. These waste products are rich in a natural biopolymer known as chitin. The deacetylated form of chitin, chitosan, has attracted attention as an adsorbent. It is a biocompatible and biodegradable polymer that can be modified and converted to various derivatives. This review paper focuses on relevant literature on strategies for chemically modifying the biopolymer and its use in the removal of heavy metals from water and wastewater. The different aspects of chitosan-based derivatives and their preparation and application are elucidated. A list of chitosan-based composites, along with their adsorptivity and experimental conditions, are compiled.