Methods: Three-month-old Sprague Dawley male rats (n=30) were randomised into five groups (n=6/group). Bone loss was induced by pantoprazole (3 mg/kg p.o.) in four groups, and they were treated concurrently with either calcium carbonate (77 mg p.o.), calcium carbonate (77 mg p.o.) plus annatto tocotrienol (60 mg/kg p.o.) or Caltrate Plus (31 mg p.o.) for 60 days. The rats were euthanised at the end of the experiment, and their femurs were harvested for X-ray micro-computed tomography, bone cellular histomorphometry and bone mechanical strength analysis.
Results: Pantoprazole caused significant deterioration of trabecular bone microstructures but did not affect other skeletal indices. Calcium supplementation with or without annatto tocotrienol prevented the deterioration of trabecular microstructures at the femur but did not improve other skeletal indices. Annatto tocotrienol did not enhance the skeletal actions of calcium, whereas Caltrate Plus did not affect the bone health indices in these rats.
Conclusion: Calcium supplementation per se can prevent the deterioration of bone trabecular microstructures in rats receiving long-term treatment of pantoprazole.
PURPOSE: Osteoporosis self-assessment tool for Asians (OSTA) is a convenient screening algorithm used widely to identify patients at risk of osteoporosis. Currently, the number of studies validating OSTA in Malaysian population is limited. This study aimed to validate the performance of OSTA in identifying subjects with osteoporosis determined with DXA.
METHODS: This cross-sectional study recruited 786 Malaysians in Klang Valley, Malaysia. Their bone health status was assessed by DXA and OSTA. The association and agreement between OSTA and bone mineral density assessment by DXA were determined by Pearson's correlation and Cohen's kappa, respectively. Receiver operating characteristics (ROC) curves were used to determine the sensitivity, specificity, and area under the curve (AUC) for OSTA.
RESULTS: OSTA and DXA showed a fair association in the study (r = 0.382, κ = 0.159, p
METHODS: The bone health status of Malaysians aged ≥40 years was assessed using CM-200 and DXA. Sensitivity, specificity, area under the curve (AUC) and the optimal cut-off values for risk stratification of CM-200 were determined using receiver operating characteristic (ROC) curves and Youden's index (J). Results: From the data of 786 subjects, CM-200 (QUS T-score 0.05). Modified cut-off values for the QUS T-score improved the performance of CM-200 in identifying subjects with osteopenia (sensitivity 67.7% (95% CI: 62.8-72.3%); specificity 72.8% (95% CI: 68.1-77.2%); J = 0.405; AUC 0.702 (95% CI: 0.666-0.739); p < 0.001) and osteoporosis (sensitivity 79.4% (95% CI: 70.0-86.9%); specificity 61.8% (95% CI: 58.1-65.5%); J = 0.412; AUC 0.706 (95% CI: 0.654-0.758); p < 0.001). Conclusion: The modified cut-off values significantly improved the performance of CM-200 in identifying individuals with osteoporosis. Since these values are device-specific, optimization is necessary for accurate detection of individuals at risk for osteoporosis using QUS.
METHOD: In total, 24 female Sprague-Dawley rats were divided into three groups. The first group was sham-operated, and the other two groups were ovariectomized. After two months, the right femora of the rats were fractured under anesthesia and internally repaired with K-wires. The sham-operated and ovariectomized control rat groups were administered olive oil (a vehicle), whereas 60 mg/kg of alpha-tocopherol was administered via oral gavage to the alpha-tocopherol group for six days per week over the course of 8 weeks. The rats were sacrificed, and the femora were dissected out. Computed tomography scans and X-rays were performed to assess fracture healing and callus staging, followed by the assessment of callus strengths through the biomechanical testing of the bones.
RESULTS: Significantly higher callus volume and callus staging were observed in the ovariectomized control group compared with the sham-operated and alpha-tocopherol groups. The ovariectomized control group also had significantly lower fracture healing scores than the sham-operated group. There were no differences between the alpha-tocopherol and sham-operated groups with respect to the above parameters. The healed femora of the ovariectomized control group demonstrated significantly lower load and strain parameters than the healed femora of the sham-operated group. Alpha-tocopherol supplementation was not able to restore these biomechanical properties.
CONCLUSION: Alpha-tocopherol supplementation appeared to promote bone fracture healing in osteoporotic rats but failed to restore the strength of the fractured bone.