Displaying publications 61 - 80 of 176 in total

Abstract:
Sort:
  1. Peter Mshelia L, Selamat J, Iskandar Putra Samsudin N, Rafii MY, Abdul Mutalib NA, Nordin N, et al.
    Toxins (Basel), 2020 07 28;12(8).
    PMID: 32731333 DOI: 10.3390/toxins12080478
    Climate change is primarily manifested by elevated temperature and carbon dioxide (CO2) levels and is projected to provide suitable cultivation grounds for pests and pathogens in the otherwise unsuitable regions. The impacts of climate change have been predicted in many parts of the world, which could threaten global food safety and food security. The aim of the present work was therefore to examine the interacting effects of water activity (aw) (0.92, 0.95, 0.98 aw), CO2 (400, 800, 1200 ppm) and temperature (30, 35 °C and 30, 33 °C for Fusarium verticillioides and F. graminearum, respectively) on fungal growth and mycotoxin production of acclimatised isolates of F. verticillioides and F. graminearum isolated from maize. To determine fungal growth, the colony diameters were measured on days 1, 3, 5, and 7. The mycotoxins produced were quantified using a quadrupole-time-of-flight mass spectrometer (QTOF-MS) combined with ultra-high-performance liquid chromatography (UHPLC) system. For F. verticillioides, the optimum conditions for growth of fumonisin B1 (FB1), and fumonisin B2 (FB2) were 30 °C + 0.98 aw + 400 ppm CO2. These conditions were also optimum for F. graminearum growth, and zearalenone (ZEA) and deoxynivalenol (DON) production. Since 30 °C and 400 ppm CO2 were the baseline treatments, it was hence concluded that the elevated temperature and CO2 levels tested did not seem to significantly impact fungal growth and mycotoxin production of acclimatised Fusarium isolates. To the best of our knowledge thus far, the present work described for the first time the effects of simulated climate change conditions on fungal growth and mycotoxin production of acclimatised isolates of F. verticillioides and F. graminearum.
  2. Nuge T, Liu X, Tshai KY, Lim SS, Nordin N, Hoque ME, et al.
    PMID: 33826152 DOI: 10.1002/bab.2162
    Despite a lot of intensive research on cells-scaffolds interaction, focused are mainly on the capacity of construct scaffolds to regulate cell mobility, migration and cytotoxicity. The effect of the scaffold's topographical and material properties on the expression of biologically active compounds from stem cells is not well understood. In this study, the influence of cellulose acetate (CA) on the electrospinnability of gelatin and the roles of gelatin-cellulose acetate (Ge-CA) on modulating the release of biologically active compounds from amniotic fluid stem cells (AFSCs) is emphasized. It was found that the presence of a small amount of CA could provide a better microenvironment that mimics AFSCs' niche. However, a large amount of CA exhibited no significant effect on AFSCs migration and infiltration. Further study on the effect of surface topography and mechanical properties on AFSCs showed that the tailored microenvironment provided by the Ge-CA scaffolds had transduced physical cues to biomolecules released into the culture media. It was found that the AFSCs seeded on electrospun scaffolds with less CA proportions has profound effects on the secretion of metabolic compounds compared to those with higher CA contained and gelatin coating. The enhanced secretion of biologically active molecules by the AFSCs on the electrospun scaffolds was proven by the accelerated wound closure on the injured human dermal fibroblast (HDF) model. The rapid HDF cell migration could be anticipated due to a higher level of paracrine factors in AFSCs media. Our study demonstrates that the fibrous topography and mechanical properties of the scaffold is a key material property that modulates the high expression of biologically active compounds from the AFSCs. The discovery elucidates a new aspect of material functions and scaffolds material-AFSCs interaction for regulating biomolecules release to promote tissue regeneration/repair. To the best of our knowledge, this is the first report describing the scaffolds material-AFSCs interaction and the efficacy of scratch assays on quantifying the cell migration in response to the AFSCs metabolic products. This article is protected by copyright. All rights reserved.
  3. Nordin N, Sani NIM, Kadir AA, Shaari R, Mohamed M, Reduan MFH, et al.
    J Adv Vet Anim Res, 2021 Mar;8(1):101-104.
    PMID: 33860019 DOI: 10.5455/javar.2021.h491
    Objective: In this case report, we have investigated the infectious bronchitis (IB) virus (IBV) outbreak with the co-infection of Escherichia coli in 28-33-day-old broiler chickens in Malaysia.

    Materials and Methods: A farmer complained that Cobb 500 chickens, raised in the open house, were having bloody diarrhea, open mouth breathing, non-uniform growth, and ruffled feathers. The mortality was about 100 birds (from about 7000 birds) per day. The sick birds were isolated and subjected to physical examination, postmortem, and histopathological analyses. Gross lesions were observed and recorded. The lung samples have proceeded with histopathological evaluations. The lungs, kidneys, trachea, air sac, and heart samples were collected to isolate bacteria and fungi through a series of conventional cultural methods, followed by molecular confirmation of the IBV.

    Results: Postmortem examination revealed air sacculitis, hemorrhagic tracheitis, pulmonary congestion, fibrin deposition in the liver and air sac, hemorrhagic enteritis, and renomegaly. The bacterial culture and biochemical tests revealed E. coli in the lungs, trachea, liver, intestine, and kidney samples. However, no fungus could be isolated from those samples. Histological evaluation of lung samples demonstrated infiltration of inflammatory cells in the pulmonary tissues. Apart from this, reverse transcription-polymerase chain reaction confirmed the presence of avian coronavirus responsible for infectious bronchitis (IB).

    Conclusion: The chickens were diagnosed with IB concurrent with E.coli. The chickens exhibited typical nephropathogenic strain of IBV infection, causing high mortality.

  4. Muhammad SA, Nordin N, Hussin P, Mehat MZ, Abu Kasim NH, Fakurazi S
    PLoS One, 2020;15(9):e0238449.
    PMID: 32886713 DOI: 10.1371/journal.pone.0238449
    Treatment of osteoarthritis (OA) is still a major clinical challenge due to the limited inherent healing capacity of cartilage. Recent studies utilising stem cells suggest that the therapeutic benefits of these cells are mediated through the paracrine mechanism of bioactive molecules. The present study evaluates the regenerative effect of stem cells from human exfoliated deciduous teeth (SHED) conditioned medium (CM) on OA chondrocytes. The CM was collected after the SHED were cultured in serum-free medium (SFM) for 48 or 72 h and the cells were characterised by the expression of MSC and pluripotency markers. Chondrocytes were stimulated with interleukin-1β and treated with the CM. Subsequently, the expression of aggrecan, collagen type 2 (COL 2), matrix metalloproteinase-13 (MMP-13), nuclear factor-kB (NF-kB) and the level of inflammatory and anti-inflammatory markers were evaluated. SHED expressed mesenchymal stromal cell surface proteins but were negative for haematopoietic markers. SHED also showed protein expression of NANOG, OCT4 and SOX2 with differential subcellular localisation. Treatment of OA chondrocytes with CM enhanced anti-inflammation compared to control cells treated with SFM. Furthermore, the expression of MMP-13 and NF-kB was significantly downregulated in stimulated chondrocytes incubated in CM. The study also revealed that CM increased the expression of aggrecan and COL 2 in OA chondrocytes compared to SFM control. Both CM regenerate extracellular matrix proteins and mitigate increased MMP-13 expression through inhibition of NF-kB in OA chondrocytes due to the presence of bioactive molecules. The study underscores the potential of CM for OA treatment.
  5. Lai MI, Wendy-Yeo WY, Ramasamy R, Nordin N, Rosli R, Veerakumarasivam A, et al.
    J Assist Reprod Genet, 2011 Apr;28(4):291-301.
    PMID: 21384252 DOI: 10.1007/s10815-011-9552-6
    Direct reprogramming of somatic cells into induced pluripotent stem (iPS) cells has emerged as an invaluable method for generating patient-specific stem cells of any lineage without the use of embryonic materials. Following the first reported generation of iPS cells from murine fibroblasts using retroviral transduction of a defined set of transcription factors, various new strategies have been developed to improve and refine the reprogramming technology. Recent developments provide optimism that the generation of safe iPS cells without any genomic modification could be derived in the near future for the use in clinical settings. This review summarizes current and evolving strategies in the generation of iPS cells, including types of somatic cells for reprogramming, variations of reprogramming genes, reprogramming methods, and how the advancement iPS cells technology can lead to the future success of reproductive medicine.
  6. Alhaji SY, Nordin N, Ngai SC, Al Abbar A, Mei L, Abdullah S
    Gene, 2020 Oct 20;758:144958.
    PMID: 32683073 DOI: 10.1016/j.gene.2020.144958
    Short-lived therapeutic gene expression in mammalian cells by DNA methylation is one of the major challenges in gene therapy. In this study, we assessed the implication of DNA methylation on the duration of GFP expression in mouse embryonic stem (ES) and mouse induced pluripotent stem (iPS) cells. The cells were transduced with lentivirus (LV) carrying green fluorescent protein (GFP) driven by either human elongation factor (EF1α) or cytomegalovirus (CMV) promoter. Transduced iPS cells exhibited higher percentage of GFP+ cells with persistent mean fluorescent intensity than transduced ES cells. Analysis on the integrated copy of transgene in the population of the transduced cells demonstrated similar copy number. However, significant increase in GFP intensity following 5-azaC treatment was observed in transduced ES cells only, suggesting the influence of DNA methylation in transgene silencing. Subsequent DNA methylation analysis showed that the promoter and the GFP region of the provirus in iPS cells had negligible methylation profile compared to transduced ES cells. Interestingly, sustained transgene expression was observed upon directed differentiation of transduced iPS cells towards CD34+ CD45+ cells. Hence, this study has shown that favourable transgene activity from lentiviral transduced iPS cells was due to the lack of methylation at the proviral regions.
  7. Davoodi H, Nordin N, Bordonali L, Korvink JG, MacKinnon N, Badilita V
    Lab Chip, 2020 08 26;20(17):3202-3212.
    PMID: 32734975 DOI: 10.1039/d0lc00364f
    Combining microfluidic devices with nuclear magnetic resonance (NMR) has the potential of unlocking their vast sample handling and processing operation space for use with the powerful analytics provided by NMR. One particularly challenging class of integrated functional elements from the perspective of NMR are conductive structures. Metallic electrodes could be used for electrochemical sample interaction for example, yet they can cause severe NMR spectral and SNR degradation. These issues are more entangled at the micro-scale since the distorted volume occupies a higher ratio of the sample volume. In this study, a combination of simulation and experimental validation was used to identify an electrode geometry that, in terms of NMR spectral parameters, performs as well as for the case when no electrodes are present. By placing the metal tracks in the side-walls of a microfluidic channel, we found that NMR RF excitation performance was actually enhanced, without compromising B0 homogeneity. Monitoring in situ deposition of chitosan in the microfluidic platform is presented as a proof-of-concept demonstration of NMR characterisation of an electrochemical process.
  8. Omar NH, Mohd Nordin NA, Chai SC, Abdul Aziz AF
    Med J Malaysia, 2020 03;75(2):146-151.
    PMID: 32281596
    INTRODUCTION: There is scarcity of research information on upper limb (UL) functionality among Malaysian post-stroke population despite the increasing number of stroke survivors. This study intends to evaluate functionality among stroke survivors residing in the community, with a specific focus on the UL.

    METHODS: This cross-sectional study involved 65 stroke survivors with UL dysfunction (mean (SD) age = 64.83 (8.05) years, mean (SD) post-stroke duration 41.62 (35.24) months) who attended community-based rehabilitation program. Upper limb functionality was assessed using the UL items of Stroke Specific Quality of Life Scale (SSQOL), the Lawton Instrumental Activities of Daily Living (IADL) Scale and the Jebsen-Taylor Hand Function Test (JTHFT). The stroke survivors' performance in completing JTHFT using their affected dominant hand was compared with standard norms.

    RESULTS: The three most affected UL daily living tasks were writing (64.7%, n=42), opening a jar (63.1%, n=41) and putting on socks (58.5%, n=38). As for IADL, the mean (SD) score of Lawton scale was 3.26 (2.41), with more than 50% unable to handle finance, do the laundry and prepare meals for themselves. Performances of stroke survivors were much slower than normal population in all tasks of JTHFT (p<0.05), with largest speed difference demonstrated for 'stacking objects' task (mean difference 43.24 secs (p=0.003) and 24.57 (p<0.001) in males and females, respectively.

    CONCLUSION: UL functions are significantly impaired among stroke survivors despite undergoing rehabilitation. Rehabilitation professionals should prioritize highly problematic tasks when retraining UL for greater post-stroke functionality.

  9. Sthaneshwar P, Nadarajan V, Maniam JA, Nordin N, Gin Gin G
    Clin Chem Lab Med, 2009;47(9):1101-7.
    PMID: 19728852 DOI: 10.1515/CCLM.2009.260
    Measurement of serum free light chains (FLCs) has recently become available for the diagnosis and monitoring of patients with plasma cell dyscrasias. The aim of this study was to investigate the performance of the serum FLC assay as a tumour marker by comparing FLC concentrations with serum protein electrophoresis (PE) results in the diagnosis of multiple myeloma (MM). In addition, we also evaluated the prognostic value of the baseline serum FLC ratio in patients with MM.
  10. Hairol MI, Nordin N, P'ng J, Sharanjeet-Kaur S, Narayanasamy S, Mohd-Ali M, et al.
    PLoS One, 2021;16(3):e0246846.
    PMID: 33657109 DOI: 10.1371/journal.pone.0246846
    Visual-motor integration (VMI) is related to children's academic performance and school readiness. VMI scores measured using the Beery-Bucktenicka Developmental Test of Visual-Motor Integration (Beery-VMI) can differ due to differences in cultural and socioeconomic backgrounds. This study compared the VMI scores of Malaysian preschoolers with the corresponding US norms and determined the association between their VMI scores and socioeconomic factors. A cross-sectional study was conducted among 435 preschoolers (mean age: 5.95±0.47 years; age range: 5.08-6.83 years) from randomly selected public and private preschools. VMI scores were measured using Beery-VMI in the preschools' classrooms. Information on the socioeconomic characteristics of the preschoolers was obtained using a parent-report questionnaire. One sample t-test was used to compare their VMI scores with the corresponding US norms. Multivariate logistic regression models were used to explore the influence of socioeconomic factors on the preschoolers' VMI scores. Overall, Malaysian preschoolers' VMI performance was similar to the US standardized norms (p>0.05). Children from low-income families were twice likely to obtain lower than average VMI scores than those from higher-income families (OR = 2.47, 95%CI 1.05, 5.86). Children enrolled at public preschools were more likely to obtain a lower than average VMI score than those who enrolled at private preschools (OR = 2.60, 95%CI 1.12, 6.06). Children who started preschool at the age of six were more likely to obtain lower than average VMI scores than those who started at an earlier age (OR = 4.66, 95%CI 1.97, 11.04). Low maternal education level was also associated with lower than average VMI score (OR = 2.60, 95%CI 1.12, 6.06). Malaysian preschoolers' Beery-VMI performance compared well to their US counterparts. Some socioeconomic factors were associated with reduced VMI scores. Those from disadvantaged socioeconomic backgrounds are more likely to have reduced VMI performance, potentially adversely affecting their school readiness, cognitive performance, and future academic achievements.
  11. Arifin NFT, Yusof N, Nordin NAHM, Jaafar J, Ismail AF, Aziz F, et al.
    Mater Today Proc, 2021;46:1959-1962.
    PMID: 33680866 DOI: 10.1016/j.matpr.2021.02.379
    Since the emergence of the novel coronavirus disease (COVID-19) pandemic, intense research has been carried out to find the effective vaccine. However, this issue remains as a global challenge. Graphene has captured various attention due to promising antimicrobial and antiviral applications, hydrophobic characteristic and superior electrical conductivity. Recently, biomass derived graphene also promises great opportunity to combat the spread COVID-19. In this paper, we demonstrated the ability and role of biomass derived graphene as superhydrophobic coating, biosensors and disinfectant in the fight against COVID-19.
  12. Nordin N, Hairon SM, Yaacob NM, Hamid AA, Isa SAM, Hassan N
    BMC Public Health, 2021 02 02;21(1):268.
    PMID: 33568119 DOI: 10.1186/s12889-021-10320-y
    BACKGROUND: People with type 2 diabetes mellitus (T2DM) are best managed by a chronic care model that is associated with enhanced quality of care and improved patient outcome. Assessing patients' perceived quality of care is crucial in improving the healthcare delivery system. Hence, this study determined the perceived quality of care among people with T2DM and explored its associations with (i) sociodemographic and clinical characteristics and (ii) types of healthcare clinics to guide future planning.

    METHODS: A cross-sectional study involving 20 primary healthcare clinics in the North East Region of Peninsular Malaysia and people with T2DM as the sampling unit was conducted from February to May 2019. The pro forma checklist, interview-guided Skala Kepuasan Interaksi Perubatan-11, and Patient Assessment of Chronic Illness Care (Malay version; PACIC-M) questionnaire were used for data collection. Univariate analysis and linear regression were used to determine the status of perceived quality of care and the factors associated with the perceived quality of care, respectively.

    RESULTS: Overall, data from 772 participants were analyzed. The majority was from the Malay ethnic group (95.6%) with a mean (standard deviation [SD]) glycated hemoglobin A1c (HbA1c) level of 8.91% (2.30). The median (interquartile range [IQR]) of the number of medical officers available at each clinic was 6 (7), with Family Doctor Concept (FDC) clinics having a higher number of medical officers than non-FDC clinics (p = 0.001). The overall mean (SD) PACIC-M score was 2.65 (0.54) with no significant difference between scores of patients treated in the two clinic types (p = 0.806). Higher perceived quality of care was associated with lower number of medical officers (adjusted regression coefficient [Adj.β], - 0.021; p-value [p], 0.001), and greater doctor-patient interaction in all domains: distress relief (Adj.β, 0.033; p,

  13. Zamanpoor M, Rosli R, Yazid MN, Husain Z, Nordin N, Thilakavathy K
    J Matern Fetal Neonatal Med, 2013 Jul;26(10):960-6.
    PMID: 23339569 DOI: 10.3109/14767058.2013.766710
    OBJECTIVE: To quantify circulating fetal DNA (fDNA) levels in the second and third trimesters of normal healthy pregnant individuals and pregnant women with the following clinical conditions: gestational diabetes mellitus (GDM), iron deficiency anemia and gestational hypertension (GHT).
    METHODS: The SRY gene located on the Y chromosome was used as a unique fetal marker. The fDNA was extracted from maternal plasma and the SRY gene concentrations were measured by quantitative real-time polymerase chain reaction (PCR) amplification using TaqMan dual labeled probe system.
    RESULTS: No significant differences were observed in the mean fDNA concentration between normal and GDM pregnancy samples (p > 0.05) and also between normal and anemic pregnancy samples (p > 0.05) in both trimesters, but significant differences were observed between the third trimester normal and GHT pregnancy samples (p = 0.001). GDM and iron deficiency anemia do not affect the levels of fDNA in maternal plasma while GHT significantly elevates the levels of fDNA in maternal plasma.
    CONCLUSIONS: Increased amount of circulating fDNA in maternal plasma could be used for early identification of adverse pregnancies. GDM and anemia do not affect the levels of fDNA in maternal plasma while GHT significantly elevates the levels of fDNA in maternal plasma. Hence, the elevated fDNA values could be used as a potential screening marker in pregnancies complicated with GHT but not with GDM and iron deficiency anemia.
  14. Lim HM, Chee H, Kandiah M, Shamsuddin K, Jamaluddin J, Nordin N, et al.
    Malays J Nutr, 2003 Sep;9(2):105-24.
    PMID: 22691732 MyJurnal
    This study was a cross-sectional survey conducted among 122 women workers employed in the electronics factories in the Ulu Klang Free Trade Zone (FTZ) and the Bangi FTZ, Selangor, Peninsular Malaysia. The purpose of the study was to examine the problem of overweight (>25.0 kg/m2) among this group of women, and factors (socio-demographic, work, exercise, and dietary) associated with overweight, and, to study the food intake pattern of the women in both the overweight and non-overweight groups. Data was collected using a set of questionnaires, while anthropometric measurements were obtained to calculate body mass index (BMI) and waist hip ratio (WHR). The results of the study indicated that 64.0% of the women were overweight (29.5% pre-obese, 34.5% obese). About one-tenth of the women (11.5%) had a WHR of above 0.85. From the bivariate analysis, it was found that women who were older, ever married, had lower educational level, had higher salary, not living in the hostel, involved in shiftwork, and trying to lose weight were more likely to be overweight. After adjusting for age, each of the above factors, except for educational level, remained significantly associated with overweight. Women's diet was found to be monotonous and lacking in variety as accessibility to and availability of a variety of food was a problem for them due to the nature of their work. They also had a sedentary lifestyle. Therefore, further research focusing on changing the poor dietary habits and sedentary lifestyle of the women workers is necessary to address the problem of overweight.
  15. Nematbakhsh S, Pei Pei C, Selamat J, Nordin N, Idris LH, Abdull Razis AF
    Genes (Basel), 2021 03 13;12(3).
    PMID: 33805667 DOI: 10.3390/genes12030414
    In the poultry industry, excessive fat deposition is considered an undesirable factor, affecting feed efficiency, meat production cost, meat quality, and consumer's health. Efforts to reduce fat deposition in economically important animals, such as chicken, can be made through different strategies; including genetic selection, feeding strategies, housing, and environmental strategies, as well as hormone supplementation. Recent investigations at the molecular level have revealed the significant role of the transcriptional and post-transcriptional regulatory networks and their interaction on modulating fat metabolism in chickens. At the transcriptional level, different transcription factors are known to regulate the expression of lipogenic and adipogenic genes through various signaling pathways, affecting chicken fat metabolism. Alternatively, at the post-transcriptional level, the regulatory mechanism of microRNAs (miRNAs) on lipid metabolism and deposition has added a promising dimension to understand the structural and functional regulatory mechanism of lipid metabolism in chicken. Therefore, this review focuses on the progress made in unraveling the molecular function of genes, transcription factors, and more notably significant miRNAs responsible for regulating adipogenesis, lipogenesis, and fat deposition in chicken. Moreover, a better understanding of the molecular regulation of lipid metabolism will give researchers novel insights to use functional molecular markers, such as miRNAs, for selection against excessive fat deposition to improve chicken production efficiency and meat quality.
  16. Othman SH, Nordin N, Azman NAA, Tawakkal ISMA, Basha RK
    Int J Biol Macromol, 2021 Jul 31;183:1352-1361.
    PMID: 34000310 DOI: 10.1016/j.ijbiomac.2021.05.082
    This study explores the preparation of corn starch (CS) films incorporated with nanocellulose fiber (NCF) and different concentrations of thymol (0.1, 0.3, and 0.5% weight of thymol/volume of solution (% w/v)) via the solvent casting method. The resulting films were characterized by the functional chemistry, crystallinity, morphology, mechanical, thermal, and barrier properties. The Fourier transform infrared spectroscopy analysis confirmed the presence of intermolecular hydrogen bonding between the thymol and starch, as well as the thymol and glycerol, via hydroxyl groups of glycerol, starch, and thymol. The film crystallinity decreased with increasing concentration of thymol. The addition of NCF at 1.5% weight of starch increased the tensile strength (TS) and Young's Modulus (YM), but decreased the elongation at break (EAB), oxygen permeability, and water vapor permeability of the CS films. The thermal stability of the CS films was also improved with the addition of NCF. The addition of thymol to the CS/NCF bio-nanocomposite films decreased the TS and YM, respectively but increased the EAB due to the plasticizing effect of thymol. The addition of thymol also improved the thermal stability but reduced the barrier properties of the films. The effects on the mechanical, thermal, and barrier properties were more pronounced at higher concentrations of thymol. In conclusion, the inclusion of both NCF and thymol led to the improvement of the flexibility and thermal stability of the CS films.
  17. Nordin N, Bordonali L, Davoodi H, Ratnawati ND, Gygli G, Korvink JG, et al.
    Angew Chem Int Ed Engl, 2021 08 23;60(35):19176-19182.
    PMID: 34132012 DOI: 10.1002/anie.202103585
    Compartmentalized chemical reactions at the microscale are important in biotechnology, yet monitoring the molecular content at these small scales is challenging. To address this challenge, we integrate a compact, reconfigurable reaction cell featuring electrochemical functionality with high-resolution NMR spectroscopy. We demonstrate the operation of this system by monitoring the activity of enzymes immobilized in chemically distinct layers within a multi-layered chitosan hydrogel assembly. As a benchmark, we observed the parallel activities of urease (Urs), catalase (Cat), and glucose oxidase (GOx) by monitoring reagent and product concentrations in real-time. Simultaneous monitoring of an independent enzymatic process (Urs) together with a cooperative process (GOx + Cat) was achieved, with chemical conversion modulation of the GOx + Cat process demonstrated by varying the order in which the hydrogel was assembled.
  18. Davoodi H, Nordin N, Munakata H, Korvink JG, MacKinnon N, Badilita V
    Sci Rep, 2021 04 08;11(1):7798.
    PMID: 33833324 DOI: 10.1038/s41598-021-87247-2
    The low frequency plateau in the frequency response of an untuned micro-resonator permits broadband radio-frequency reception, albeit at the expense of optimal signal-to-noise ratio for a particular nucleus. In this contribution we determine useful figures of merit for broadband micro-coils, and thereby explore the parametric design space towards acceptable simultaneous excitation and reception of a microfluidic sample over a wide frequency band ranging from 13C to 1H, i.e., 125-500 MHz in an 11.74 T magnet. The detector achieves 37% of the performance of a comparably sized, tuned and matched resonator, and a linewidth of 17 ppb using standard magnet shims. The use of broadband detectors circumvents numerous difficulties introduced by multi-resonant RF detector circuits, including sample loading effects on matching, channel isolation, and field distortion.
  19. Jaafaru MS, Nordin N, Shaari K, Rosli R, Abdull Razis AF
    PLoS One, 2018;13(5):e0196403.
    PMID: 29723199 DOI: 10.1371/journal.pone.0196403
    Reactive oxygen species are well known for induction of oxidative stress conditions through oxidation of vital biomarkers leading to cellular death via apoptosis and other process, thereby causing devastative effects on the host organs. This effect is believed to be linked with pathological alterations seen in several neurodegenerative disease conditions. Many phytochemical compounds proved to have robust antioxidant activities that deterred cells against cytotoxic stress environment, thus protect apoptotic cell death. In view of that we studied the potential of glucomoringin-isothiocyanate (GMG-ITC) or moringin to mitigate the process that lead to neurodegeneration in various ways. Neuroprotective effect of GMG-ITC was performed on retinoic acid (RA) induced differentiated neuroblastoma cells (SHSY5Y) via cell viability assay, flow cytometry analysis and fluorescence microscopy by means of acridine orange and propidium iodide double staining, to evaluate the anti-apoptotic activity and morphology conservation ability of the compound. Additionally, neurite surface integrity and ultrastructural analysis were carried out by means of scanning and transmission electron microscopy to assess the orientation of surface and internal features of the treated neuronal cells. GMG-ITC pre-treated neuron cells showed significant resistance to H2O2-induced apoptotic cell death, revealing high level of protection by the compound. Increase of intracellular oxidative stress induced by H2O2 was mitigated by GMG-ITC. Thus, pre-treatment with the compound conferred significant protection to cytoskeleton and cytoplasmic inclusion coupled with conservation of surface morphological features and general integrity of neuronal cells. Therefore, the collective findings in the presence study indicated the potentials of GMG-ITC to protect the integrity of neuron cells against induced oxidative-stress related cytotoxic processes, the hallmark of neurodegenerative diseases.
  20. Eliseus A, Bilad MR, Nordin NAHM, Putra ZA, Wirzal MDH
    Bioresour Technol, 2017 Oct;241:661-668.
    PMID: 28609754 DOI: 10.1016/j.biortech.2017.05.175
    Microalgae harvesting using membrane technology is challenging because of its high fouling propensity. As an established fouling mitigation technique, efficacy of air bubbles can be improved by maximizing the impact of shear-rates in scouring foulant. In this study, it is achieved by tilting the membrane panel. We investigate the effect of tilting angle, switching period as well as aeration rate during microalgal broth filtration. Results show that higher tilting angles (up to 20°) improve permeability of up to 2.7 times of the vertical panel. In addition, operating a one-sided panel is better than a two-sided panel, in which the later involved switching mode. One-sided membrane panel only require a half of area, yet its performance is comparable with of a large-scale module. This tilted panel can lead to significant membrane cost reductions and eventually improves the competitiveness of membrane technology for microalgae harvesting application.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links