Displaying publications 761 - 780 of 4087 in total

Abstract:
Sort:
  1. Neik TX, Chai JY, Tan SY, Sudo MPS, Cui Y, Jayaraj J, et al.
    G3 (Bethesda), 2019 09 04;9(9):2941-2950.
    PMID: 31292156 DOI: 10.1534/g3.119.400021
    Weedy crop relatives are among the world's most problematic agricultural weeds, and their ability to rapidly evolve can be enhanced by gene flow from both domesticated crop varieties and wild crop progenitor species. In this study, we examined the role of modern commercial crop cultivars, traditional landraces, and wild relatives in the recent emergence and proliferation of weedy rice in East Malaysia on the island of Borneo. This region of Malaysia is separated from the Asian continent by the South China Sea, and weedy rice has become a major problem there more recently than on the Malaysian peninsular mainland. Using 24 polymorphic SSR loci and genotype data from the awn-length domestication gene An-1, we assessed the genetic diversity, population structure and potential origins of East Malaysian weeds; 564 weedy, cultivated and wild rice accessions were analyzed from samples collected in East Malaysia, Peninsular Malaysia and neighboring countries. While there is considerable evidence for contributions of Peninsular Malaysian weed ecotypes to East Malaysian populations, we find that local crop cultivars and/or landraces from neighboring countries are also likely contributors to the weedy rice infestations. These findings highlight the implications of genetic admixture from different cultivar source populations in the spread of weedy crop relatives and the urgent need for preventive measurements to maintain sustainable crop yields.
    Matched MeSH terms: Plant Proteins/genetics
  2. Nur Athirah Abd Hamid, Ismanizan Ismail
    Sains Malaysiana, 2018;47:2961-2968.
    Protein degradation can occur through Ubiquitin 26S-Proteosome System (UPS). The degradation can be mediated by
    the SCF E3 ubiquitin ligase complex consisting of Skp1, Cullin, and F-box protein as the main components. The F-box
    protein at the C-terminal domain functions to recognize the targeted protein to be ubiquitinated and degraded via UPS.
    A stress-responsive F-box gene, PmF-box1 from Persicaria minor was categorized in the F-box containing kelch repeat
    (FBK) family; a family that specific to plant kingdom. To identify the targeted protein of PmF-box1, yeast-two hybrid system
    (Y2H) was used. In the Y2H screening process, mating efficiency is very important to fish out the interacting proteins.
    Therefore, one modification was conducted to increase the mating efficiency. In this screening, PmF-box1 was used as a
    bait to screen for the Y2H library which was constructed using RNA from plant samples treated with abscisic acid (ABA)
    and polyethylene glycol (PEG)-8000 and control sample. Autoactivation and toxicity tests of bait were performed before
    the Y2H screening. Tests on PmF-box1 showed that it is not toxic to the yeast and cannot autoactivate the yeast reporter
    genes. Mating efficiency was improved from 2.07% to 9.15% after addition of PEG-4000 in the mating culture compared
    to the original protocol, which it also increased the colony number in the screening step afterward. Additionally, bands
    of gene with different sizes were observed on electrophoresis gel after colony PCR analysis from the improved technique.
    Those genes may code for potential interacting proteins that needs further identification and confirmation.
    Matched MeSH terms: F-Box Proteins; Cullin Proteins
  3. Muhamad R, Draman N, Aziz AA, Abdullah S, Jaeb MZM
    J Taibah Univ Med Sci, 2018 Feb;13(1):42-50.
    PMID: 31435301 DOI: 10.1016/j.jtumed.2017.05.014
    Objectives: This study aimed to assess the efficacy of a 6-months regime of honey supplementation in improving the quality of life (QoL) of patients with chronic obstructive pulmonary disease (COPD).

    Methods: A single blind randomized controlled trial on 34 patients with COPD was conducted. The participants were divided into two groups, including honey (n = 22) and standard care (n = 12). St. George's Respiratory Questionnaire (SGRQ) was used to assess the QoL. The QoL total score was analysed using repeated measure ANOVA.

    Result: There were no significant differences between the honey and standard care groups for socio-demographic and QoL variables. The within-time analysis showed statistically significant differences between baseline and post 2, 4 and 6-months in the total QoL score in the honey group. Otherwise, only marginally significant difference was detected between baseline and post 2-months in the standard care group. A comparison of total QoL score between the two groups, based on time (between and within), favoured the honey group. The honey group demonstrated a significantly lower mean total QoL score compared with the standard group at 4-months (28.89; 95% CI: 21.19, 36.59 vs 42.38; 95% CI: 31.95, 52.81) and 6 months (22.91; 95% CI: 14.94, 30.87 vs 41.95; 95% CI: 31.17, 52.73).

    Conclusion: Supplementation of honey in patients with COPD results in better intermediate and long-term changes in the overall QoL.

    Matched MeSH terms: Nerve Tissue Proteins; RNA-Binding Proteins
  4. Wagner B, Krebitz M, Buck D, Niggemann B, Yeang HY, Han KH, et al.
    J Allergy Clin Immunol, 1999 Nov;104(5):1084-92.
    PMID: 10550757
    BACKGROUND: Two natural rubber latex proteins, Hev b 1 and Hev b 3, have been described in spina bifida (SB)-associated latex allergy.

    OBJECTIVE: The aim of this study was to clone and express Hev b 3 and to obtain the immunologic active and soluble recombinant allergen for diagnosis of SB-associated latex allergy.

    METHODS: A complementary DNA (cDNA) coding for Hev b 3 was amplified from RNA of fresh latex collected from Malaysian rubber trees (Hevea brasiliensis). PCR primers were designed according to sequences of internal peptide fragments of natural (n) Hev b 3. The 5'-end sequence was obtained by specific amplification of cDNA ends. The recombinant (r) Hev b 3 was produced in Escherichia coli as a 6xHis tagged protein. Immunoblotting and inhibition assays were performed to characterize the recombinant allergen.

    RESULTS: An Hev b 3 cDNA clone of 922 bp encoding a protein of 204 amino acid residues corresponding to a molecular weight of 22.3 kd was obtained. In immunoblots 29/35, latex-allergic patients with SB revealed IgE binding to rHev b 3, as did 4 of 15 of the latex-sensitized group. The presence of all IgE epitopes on rHev b 3 was shown by its ability to abolish all IgE binding to nHev b 3. Hev b 3 is related to Hev b 1 by a sequence identity of 47%. Cross-reactivity between these 2 latex allergens was illustrated by the large extent of inhibition of IgE binding to nHev b 1 by rHev b 3.

    CONCLUSION: rHev b 3 constitutes a suitable in vitro reagent for the diagnosis of latex allergy in patients with SB. The determination of the full sequence of Hev b 3 and the production of the recombinant allergen will allow the epitope mapping and improve diagnostic reagents for latex allergy.

    Matched MeSH terms: Plant Proteins/genetics; Plant Proteins/immunology*; Plant Proteins/isolation & purification; Recombinant Fusion Proteins/genetics; Recombinant Fusion Proteins/immunology*; Recombinant Fusion Proteins/isolation & purification
  5. Azizi P, Osman M, Hanafi MM, Sahebi M, Rafii MY, Taheri S, et al.
    Crit Rev Biotechnol, 2019 Nov;39(7):904-923.
    PMID: 31303070 DOI: 10.1080/07388551.2019.1632257
    A large number of rice agronomic traits are complex, multi factorial and polygenic. As the mechanisms and genes determining grain size and yield are largely unknown, the identification of regulatory genes related to grain development remains a preeminent approach in rice genetic studies and breeding programs. Genes regulating cell proliferation and expansion in spikelet hulls and participating in endosperm development are the main controllers of rice kernel elongation and grain size. We review here and discuss recent findings on genes controlling rice grain size and the mechanisms, epialleles, epigenomic variation, and assessment of controlling genes using genome-editing tools relating to kernel elongation.
    Matched MeSH terms: Plant Proteins/genetics
  6. Chong FP, Ng KY, Koh RY, Chye SM
    Cell Mol Neurobiol, 2018 Jul;38(5):965-980.
    PMID: 29299792 DOI: 10.1007/s10571-017-0574-1
    Alzheimer's disease (AD) is characterized by progressive memory loss and cognitive function deficits. There are two major pathological hallmarks that contribute to the pathogenesis of AD which are the presence of extracellular amyloid plaques composed of amyloid-β (Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau. Despite extensive research that has been done on Aβ in the last two decades, therapies targeting Aβ were not very fruitful at treating AD as the efficacy of Aβ therapies observed in animal models is not reflected in human clinical trials. Hence, tau-directed therapies have received tremendous attention as the potential treatments for AD. Tauopathies are closely correlated with dementia and immunotherapy has been effective at reducing tau pathology and improving cognitive deficits in animal models. Thus, in this review article, we discussed the pathological mechanism of tau proteins, the key factors contributing to tauopathies, and therapeutic approaches for tauopathies in AD based on the recent progress in tau-based research.
    Matched MeSH terms: tau Proteins/metabolism*
  7. Hamad HA, Enezei HH, Alrawas A, Zakuan NM, Abdullah NA, Cheah YK, et al.
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858793 DOI: 10.3390/molecules25173876
    Hypoxia plays a significant role in solid tumors by the increased expression of hypoxia-inducible factor-1α (HIF-1α), which is known to promote cancer invasion and metastasis. Cancer-cell invasion dynamically begins with the degradation of the extracellular matrix (ECM) via invadopodia formation. The chemical substrates that are utilized by hypoxic cells as fuel to drive invadopodia formation are still not fully understood. Therefore, the aim of the study was to maintain MDA-MB-231 cells under hypoxia conditions to allow cells to form a large number of invadopodia as a model, followed by identifying their nutrient utilization. The results of the study revealed an increase in the number of cells forming invadopodia under hypoxia conditions. Moreover, Western blot analysis confirmed that essential proteins for hypoxia and invadopodia, including HIF-1α, vascular endothelial growth factor (VEGF), metallopeptidase-2 (MMP-2), and Rho guanine nucleotide exchange factor 7 (β-PIX), significantly increased under hypoxia. Interestingly, phenotype microarray showed that only 11 chemical substrates from 367 types of substrates were significantly metabolized in hypoxia compared to in normoxia. This is thought to be fuel for hypoxia to drive the invasion process. In conclusion, we found 11 chemical substrates that could have potential energy sources for hypoxia-induced invadopodia formation of these cells. This may in part be a target in the hypoxic tumor and invadopodia formation. Additionally, these findings can be used as potential carrier targets in cancer-drug discovery, such as the usage of dextrin.
    Matched MeSH terms: Neoplasm Proteins/metabolism*
  8. Adilah-Amrannudin N, Hamsidi M, Ismail NA, Ismail R, Dom NC, Ahmad AH, et al.
    J Am Mosq Control Assoc, 2016 Dec;32(4):265-272.
    PMID: 28206858 DOI: 10.2987/16-6579.1
    This study was performed to establish the genetic variability of Aedes albopictus within Subang Jaya, Selangor, Malaysia, by using the nicotinamide adenine dinucleotide dehydrogenase 5 subunit (ND5) mitochondrial DNA (mtDNA) marker. A total of 90 samples were collected from 9 localities within an area of the Subang Jaya Municipality. Genetic variability was determined through the amplification and sequencing of a fragment of the ND5 gene. Eight distinct mtDNA haplotypes were identified. The evolutionary relationship of the local haplotypes alongside 28 reference strains was used to construct a phylogram, the analysis of which revealed low genetic differentiation in terms of both nucleotide and haplotype diversity. Bayesian method was used to infer the phylogenetic tree, revealing a unique relationship between local isolates. The study corroborates the reliability of ND5 to identify distinct lineages for polymorphism-based studies and supplements the existing body of knowledge regarding its genetic diversity. This in turn could potentially aid existing vector control strategies to help mitigate the risk and spread of the dengue virus.
    Matched MeSH terms: Insect Proteins/genetics*
  9. Teh AH, Sim PF, Hisano T
    Biochem Biophys Res Commun, 2020 12 10;533(3):257-261.
    PMID: 33010888 DOI: 10.1016/j.bbrc.2020.09.064
    The alginate lyase AlyQ from Persicobacter sp. CCB-QB2 is a three-domained enzyme with a carbohydrate-binding module (CBM) from family 32. The CBM32 domain, AlyQB, binds enzymatically cleaved but not intact alginate. Co-crystallisation of AlyQB with the cleaved alginate reveals that it binds to the 4,5-unsaturated mannuronic acid of the non-reducing end. The binding pocket contains a conserved R248 that interacts with the sugar's carboxyl group, as well as an invariant W303 that stacks against the unsaturated pyranose ring. Targeting specifically the non-reducing end is more efficient than the reducing end since the latter consists of a mixture of mannuronic acid and guluronic acid. AlyQB also seems unable to bind these two saturated sugars as they contain OH groups that will clash with the pocket. Docking analysis of YeCBM32, which binds oligogalacturonic acid, shows that the stacking of the pyranose ring is shifted in order to accommodate the sugar's axial C1-OH, and its R69 is accordingly elevated to bind the sugar's carboxyl group. Unlike AlyQB, YeCBM32's binding pocket is able to accommodate both saturated and unsaturated galacturonic acid.
    Matched MeSH terms: Bacterial Proteins/genetics; Bacterial Proteins/metabolism; Bacterial Proteins/chemistry*; Recombinant Proteins/genetics; Recombinant Proteins/metabolism; Recombinant Proteins/chemistry
  10. Samson DO, Jafri MZM, Shukri A, Hashim R, Sulaiman O, Aziz MZA, et al.
    Radiat Environ Biophys, 2020 08;59(3):483-501.
    PMID: 32333105 DOI: 10.1007/s00411-020-00844-z
    For the first time, Rhizophora spp. (Rh. spp.) particleboard phantoms were developed using defatted soy flour (DSF) and soy protein isolate (SPI) modified by sodium hydroxide and itaconic acid polyamidoamine-epichlorohydrin (IA-PAE) adhesive. The microstructural characterization and X-ray diffraction patterns of the material revealed that the modified DSF and SPI adhesives became more compact and homogeneous when NaOH/IA-PAE was added, which prevented damage by moisture. It was confirmed that the composite is crystalline with (101), (002), and (004) orientations. Phantoms made of this material were scanned with X-ray computed tomography (CT) typically used for abdominal examinations with varying energies corresponding to 80, 120, and 135 kVp, to determine CT numbers, electron densities, and density distribution profiles. The radiation attenuation parameters were found to be not significantly different from those of water (XCOM) with p values [Formula: see text] 0.05 for DSF and SPI. The DSF- and SPI-based particleboard phantoms showed CT numbers close to those of water at the three X-ray CT energies. In addition, electron density and density distribution profiles of DSF-SPI-Rh. spp. particleboard phantoms with 15 wt% IA-PAE content were even closer to those of water and other commercial phantom materials at the three X-ray CT energies. It is concluded that DSF-SPI with NaOH/IA-PAE added can be used as a potential adhesive in Rh. spp. particleboard phantoms for radiation dosimetry.
    Matched MeSH terms: Soybean Proteins*
  11. Hanafiah A, Razak SA, Neoh HM, Zin NM, Lopes BS
    Braz J Infect Dis, 2020 11 04;24(6):545-551.
    PMID: 33157035 DOI: 10.1016/j.bjid.2020.10.005
    BACKGROUND: Helicobacter pylori harbouring cag-pathogenicity island (cagPAI) which encodes type IV secretion system (T4SS) and cagA virulence gene are involved in inflammation of the gastric mucosa. We examined all the 27 cagPAI genes in 88 H. pylori isolates from patients of different ethnicities and examined the association of the intactness of cagPAI region with histopathological scores of the gastric mucosa.

    RESULTS: 96.6% (n=85) of H. pylori isolates were cagPAI-positive with 22.4% (19/85) having an intact cagPAI, whereas 77.6% (66/85) had a partial/rearranged cagPAI. The frequency of cag2 and cag14 were found to be significantly higher in H. pylori isolated from Malays, whereas cag4 was predominantly found in Chinese isolates. The cag24 was significantly found in higher proportions in Malay and Indian isolates than in Chinese isolates. The intactness of cagPAI region showed an association with histopathological scores of the gastric mucosa. Significant association was observed between H. pylori harbouring partial cagPAI with higher density of bacteria and neutrophil activity, whereas strains lacking cagPAI were associated with higher inflammatory score.

    CONCLUSIONS: The genotypes of H. pylori strains with various cagPAI rearrangement associated with patients' ethnicities and histopathological scores might contribute to the pathogenesis of H. pylori infection in a multi-ethnic population.

    Matched MeSH terms: Bacterial Proteins/genetics
  12. Xu Y, Victorio CBL, Meng T, Jia Q, Tan YJ, Chua KB
    Virol Sin, 2019 Jun;34(3):262-269.
    PMID: 31016480 DOI: 10.1007/s12250-019-00116-1
    Our previous work has shown that Saffold virus (SAFV) induced several rodent and primate cell lines to undergo apoptosis (Xu et al. in Emerg Microb Infect 3:1-8, 2014), but the essential viral proteins of SAFV involved in apoptotic activity lack study. In this study, we individually transfected the viral proteins of SAFV into HEp-2 and Vero cells to assess their ability to induce apoptosis, and found that the 2B and 3C proteins are proapoptotic. Further investigation indicated the transmembrane domain of the 2B protein is essential for the apoptotic activity and tetramer formation of the 2B protein. Our research provides clues for the possible mechanisms of apoptosis induced by SAFV in different cell lines. It also opens up new directions to study viral proteins (the 2B, 3C protein), and sets the stage for future exploration of any possible link between SAFV, inclusive of its related uncultivable genotypes, and multiple sclerosis.
    Matched MeSH terms: Viral Proteins/genetics*
  13. Tian S, Meng YH, Liu MY, Sun F, Chen JH, Du HL, et al.
    Zool Res, 2013 Apr;34(2):97-102.
    PMID: 23572358 DOI: 10.3724/SP.J.1141.2013.02097
    In most Old world monkey species, TRIM5α plays a role in combating retroviruses and restricting HIV-1. Alongside TRIM5α, the TRIMCyp fusion gene formed by the retrotransposition of a CypA pseudogene cDNA to 3' terminal or 3'-UTR of TRIM5 gene in these monkeys has become a key research area in anti HIV-1 factors. The regional differences, gene frequencies, genotypes, and retrovirus restrictive activities of TRIMCyp vary among different primate species. While the frequencies of cynomolgus TRIMCyp have been studied in several areas of Southeast Asia, the frequency and prevalence of cynomolgus TRIMCyp in China remains unclear. In this study, we screened 1, 594 cynomolgus samples from 11 monkey manufacturers located across 5 provinces in China. Our results showed that the frequencies of TRIMCyp range from 7.65% to 19.79%, markedly lower than the frequencies found in monkey species in the Philippines, Malaysia and Indonesia (ranging from 34.85% to 100%). We speculate that potentially the latter were isolated groups established since 1978. The NE haplotype frequencies of cynomolgus TRIMCyp were 4.93% in China, also significantly lower than those found in species in the Philippines, Malaysia and Indonesia (from 11.1% to 14.3%). Our research provides interesting findings that contribute towards a more firm basis of further studies of HIV-1 animal models and relevant pathogenesis.
    Matched MeSH terms: Mutant Chimeric Proteins/genetics*
  14. Alahmad A, Nasca A, Heidler J, Thompson K, Oláhová M, Legati A, et al.
    EMBO Mol Med, 2020 11 06;12(11):e12619.
    PMID: 32969598 DOI: 10.15252/emmm.202012619
    Leigh syndrome is a progressive neurodegenerative disorder, most commonly observed in paediatric mitochondrial disease, and is often associated with pathogenic variants in complex I structural subunits or assembly factors resulting in isolated respiratory chain complex I deficiency. Clinical heterogeneity has been reported, but key diagnostic findings are developmental regression, elevated lactate and characteristic neuroimaging abnormalities. Here, we describe three affected children from two unrelated families who presented with Leigh syndrome due to homozygous variants (c.346_*7del and c.173A>T p.His58Leu) in NDUFC2, encoding a complex I subunit. Biochemical and functional investigation of subjects' fibroblasts confirmed a severe defect in complex I activity, subunit expression and assembly. Lentiviral transduction of subjects' fibroblasts with wild-type NDUFC2 cDNA increased complex I assembly supporting the association of the identified NDUFC2 variants with mitochondrial pathology. Complexome profiling confirmed a loss of NDUFC2 and defective complex I assembly, revealing aberrant assembly intermediates suggestive of stalled biogenesis of the complex I holoenzyme and indicating a crucial role for NDUFC2 in the assembly of the membrane arm of complex I, particularly the ND2 module.
    Matched MeSH terms: Mitochondrial Proteins/genetics
  15. Ng PY, Chang IS, Koh RY, Chye SM
    Metab Brain Dis, 2020 10;35(7):1049-1066.
    PMID: 32632666 DOI: 10.1007/s11011-020-00591-6
    Alzheimer's disease (AD) has been a worldwide concern for many years now. This is due to the fact that AD is an irreversible and progressive neurodegenerative disease that affects quality of life. Failure of some Phase II/III clinical trials in AD targeting accumulation of β-amyloid in the brain has led to an increase in interest in studying alternative treatments against tubulin-associated unit (Tau) pathology. These alternative treatments include active and passive immunisation. Based on numerous studies, Tau is reported as a potential immunotherapeutic target for tauopathy-related diseases including AD. Accumulation and aggregation of hyperphosphorylated Tau as neuropil threads and neurofibrillary tangles (NFT) are pathological hallmarks of AD. Both active and passive immunisation targeting Tau protein have shown the capabilities to decrease or prevent Tau pathology and improve either motor or cognitive impairment in various animal models. In this review, we summarise recent advances in active and passive immunisation targeting pathological Tau protein, and will discuss with data obtained from both animal and human trials. Together, we give a brief overview about problems being encountered in these immunotherapies.
    Matched MeSH terms: tau Proteins/immunology*
  16. Ng HF, Ngeow YF
    Pathog Dis, 2020 11 11;78(8).
    PMID: 32945880 DOI: 10.1093/femspd/ftaa055
    The subspecies classification of Mycobacteroides abscessus complex into M. abscessus, M. massiliense and M. bolletii requires the amplification and sequencing of multiple genes. The objective of this study was to evaluate the possibility of subspecies classification using a single PCR target. An in silico study was performed to classify 1613 strains deposited in a public database using 9 genes (partial gene sequences of hsp65, rpoB, sodA, argH, cya, glpK, gnd, and murC, and the full gene sequence of MAB_3542c). We found the housekeeping gene gnd to be able to classify the M. abscessus subspecies with high accuracy (99.94%). A single-gene PCR approach based on gnd would be a suitable replacement for the more expensive, labor-intensive and time-consuming multi-gene PCR analysis currently in use for the subspecies identification of M. abscessus.
    Matched MeSH terms: Bacterial Proteins/genetics
  17. Kafi AKM, Alim S, Jose R, Yusoff MM
    J Nanosci Nanotechnol, 2019 04 01;19(4):2027-2033.
    PMID: 30486943 DOI: 10.1166/jnn.2019.15465
    A multiporous nanofiber (MPNFs) of SnO₂ and chitosan has been used for the immobilization of a redox protein, hemoglobin (Hb), onto the surface of glassy carbon electrode (GCE). The multiporous nanofiber of SnO₂ that has very high surface area is synthesized by using electrospinning technique through controlling the tin precursor concentration. Since the constructed MPNFs of SnO₂ exposes very high surface area, it increases the efficiency for biomolecule-loading. The morphology of fabricated electrodes is examined by SEM observation and the absorbance spectra of Hb/(MPNFs) of SnO₂ are studied by UV-Vis analysis. Cyclic Voltammetry and amperometry are employed to study and optimize the performance of the resulting fabricated electrode. After fabrication of the electrode with the Hb and MPNFs of SnO₂, a direct electron transfer between the protein's redox centre and the glassy carbon electrode was established. The modified electrode has showed a couple of redox peak located at -0.29 V and -0.18 V and found to be sensitive to H₂O₂. The fabricated electrode also exhibited an excellent electrocatalytic activity towards the reduction of H₂O₂. The catalysis currents increased linearly to the H₂O₂ concentration in a wide range of 5.0×10-6-1.5×10-4 M. Overall experimental results show that MPNFs of SnO₂ has a role towards the enhancement of the electroactivity of Hb at the electrode surface. Thus the MPNFs of SnO₂ is a very promising candidate for future biosensor applications.
    Matched MeSH terms: Immobilized Proteins*
  18. Wong KC, Sankaran S, Jayapalan JJ, Subramanian P, Abdul-Rahman PS
    Arch Insect Biochem Physiol, 2021 May;107(1):e21785.
    PMID: 33818826 DOI: 10.1002/arch.21785
    Mutant lethal giant larvae (lgl) flies (Drosophila melanogaster) are known to develop epithelial tumors with invasive characteristics. The present study has been conducted to investigate the influence of melatonin (0.025 mM) on behavioral responses of lgl mutant flies as well as on biochemical indices (redox homeostasis, carbohydrate and lipid metabolism, transaminases, and minerals) in hemolymph, and head and intestinal tissues. Behavioral abnormalities were quantitatively observed in lgl flies but were found normalized among melatonin-treated lgl flies. Significantly decreased levels of lipid peroxidation products and antioxidants involved in redox homeostasis were observed in hemolymph and tissues of lgl flies, but had restored close to normalcy in melatonin-treated flies. Carbohydrates including glucose, trehalose, and glycogen were decreased and increased in the hemolymph and tissues of lgl and melatonin-treated lgl flies, respectively. Key enzymes of carbohydrate metabolism showed a significant increment in their levels in lgl mutants but had restored close to wild-type baseline levels in melatonin-treated flies. Variables of lipid metabolism showed significantly inverse levels in hemolymph and tissues of lgl flies, while normalization of most of these variables was observed in melatonin-treated mutants. Lipase, chitinase, transaminases, and alkaline phosphatase showed an increment in their activities and minerals exhibited decrement in lgl flies; reversal of changes was observed under melatonin treatment. The impairment of cognition, disturbance of redox homeostasis and metabolic reprogramming in lgl flies, and restoration of normalcy in all these cellular and behavioral processes indicate that melatonin could act as oncostatic and cytoprotective agents in Drosophila.
    Matched MeSH terms: Tumor Suppressor Proteins/blood; Tumor Suppressor Proteins/drug effects; Tumor Suppressor Proteins/genetics; Drosophila Proteins/drug effects; Drosophila Proteins/genetics; Drosophila Proteins/metabolism
  19. Lee CL, Ng HF, Ngeow YF, Thaw Z
    J Med Microbiol, 2021 Jul;70(7).
    PMID: 34236301 DOI: 10.1099/jmm.0.001378
    Introduction. Tigecycline is currently acknowledged to be one of the most effective antibiotics against infections caused by Mycobacteroides abscessus.Gap statement. The genetic determinants of tigecycline resistance in M. abscessus are not well understood.Aim. In this study, we characterized a tigecycline-resistant M. abscessus mutant, designated CL7, to identify the potential resistance mechanism.Methodology. CL7 was characterized using antimicrobial susceptibility testing, whole-genome sequencing, PCR and RT-qPCR. For biological verification, gene overexpression assays were carried out.Results. Whole-genome sequencing and the subsequent gene overexpression assays showed that CL7 harboured a stop-gain mutation in MAB_3543 c, which may be responsible for the tigecycline resistance phenotype. This gene encodes an orthologue of SigH, which is involved in the positive regulation of physiological stress response and is negatively regulated by the RshA anti-sigma factor in Mycobacterium tuberculosis. We hypothesized that the MAB_3543 c mutation may disrupt the interaction between SigH and RshA (MAB_3542 c). RT-qPCR analyses revealed the upregulation of MAB_3543 c and other key stress response genes, which has previously been shown to be a hallmark of SigH-RshA bond disruption and tigecycline resistance.Conclusion. The MAB_3543c mutation may represent a novel determinant of tigecycline resistance in M. abscessus. The findings of this study will hopefully contribute to our knowledge of potential tigecycline resistance mechanisms in M. abscessus, which may lead to better diagnostics and treatment modalities in the future.
    Matched MeSH terms: Bacterial Proteins/genetics*
  20. Xiang BLS, Kwok-Wai L, Soo-Beng AK, Mohana-Kumaran N
    Trop Life Sci Res, 2020 Oct;31(3):1-13.
    PMID: 33214852 DOI: 10.21315/tlsr2020.31.3.1
    The BCL-2 anti-apoptotic proteins are over-expressed in many cancers and hence are attractive therapeutic targets. In this study, we tested the sensitivity of two Nasopharyngeal Carcinoma (NPC) cell lines HK1 and C666-1 to Maritoclax, which is reported to repress anti-apoptotic protein MCL-1 and BH3 mimetic ABT-263, which selectively inhibits anti-apoptotic proteins BCL-2, BCL-XL and BCL-w. We investigated the sensitisation of the NPC cell lines to these drugs using the SYBR Green I assay and 3D NPC spheroids. We report that Maritoclax repressed anti-apoptotic proteins MCL-1, BCL-2, and BCL-XL in a dose- and time-dependent manner and displayed a single agent activity in inhibiting cell proliferation of the NPC cell lines. Moreover, combination of Maritoclax and ABT-263 exhibited synergistic antiproliferative effect in the HK1 cells. Similar results were obtained in the 3D spheroids generated from the HK1 cells. More notably, 3D HK1 spheroids either treated with single agent Maritoclax or combination with ABT-263, over 10 days, did not develop resistance to the treatment rapidly. Collectively, the findings illustrate that Maritoclax as a single agent or combination with BH3 mimetics could be potentially useful as treatment strategies for the management of NPC.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2; Apoptosis Regulatory Proteins
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links