AIM OF THE STUDY: In this context, supported with previous preliminary data of its antiplasmodial activity, this study was undertaken to determine the in vitro antiplasmodial and cytotoxicity activities of G. lanceolatus crude extracts and its major compounds.
MATERIALS AND METHODS: The in vitro antiplasmodial activity was determined by parasite lactate dehydrogenase (pLDH) assay on chloroquine-sensitive (3D7) and chloroquine-resistant (K1) strains of Plasmodium falciparum. The cytotoxicity activity was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on hepatocellular carcinoma (HepG2) and normal liver (WRL-68) cell lines.
RESULTS: The root methanol extract possessed potent antiplasmodial activity against both P. falciparum 3D7 and K1 strains (IC50 = 2.7 μg/ml, SI = 140; IC50 = 1.7 μg/ml, SI = 236). Apart from the DCM extract of stem bark and root that were found to be inactive (IC50 > 50 μg/ml) against 3D7 strain, all other tested crude extracts exhibited promising (5< IC50 30 µg/ml, CC50 > 10 µM, respectively), except for the hexane and DCM extracts of root, which exerted mild cytotoxicity on HepG2 cell line (IC50 plant extract. It is also noteworthy, that the extract and compound were more active against chloroquine-resistant (K1) strain of P. falciparum. Further studies are being carried out to assess their toxicity profile and antimalarial efficacy in animal model.
METHODS: Proton Nuclear Magnetic Resonance (1H NMR) and Liquid Chromatography Mass Spectroscopy (LCMS) coupled with multivariate data analysis were employed to characterize the metabolic variations of intracellular metabolites and the compositional changes of the corresponding culture media in rat renal proximal tubular cells (NRK-52E).
RESULTS: NMR and LCMS analysis highlighted choline, creatine, phosphocholine, valine, acetic acid, phenylalanine, leucine, glutamic acid, threonine, uridine and proline as the main metabolites which differentiated the cisplatin-induced group of NRK-52E from control cells extract. The corresponding media exhibited lactic acid, glutamine, glutamic acid and glucose-1-phosphate as the varied metabolites. The altered pathways perturbed by cisplatin nephrotoxic on NRK-52E cells included changes in amino acid metabolism, lipid metabolism and glycolysis.
CONCLUSION: The C. nutans aqueous extract (1000 μg/mL) exhibited the most potential nephroprotective effect against cisplatin toxicity on NRK-52E cell lines at 89% of viability. The protective effect could be seen through the changes of the metabolites such as choline, alanine and valine in the C. nutans pre-treated samples with those of the cisplatin-induced group.