Displaying publications 721 - 740 of 10432 in total

Abstract:
Sort:
  1. Sia CS, Tey BT, Goh BH, Low LE
    Colloids Surf B Biointerfaces, 2024 Sep;241:114051.
    PMID: 38954935 DOI: 10.1016/j.colsurfb.2024.114051
    There has been a surge in effort in the development of various solid nanoparticles as Pickering emulsion stabilizers in the past decades. Regardless, the exploration of stabilizers that simultaneously stabilize and deliver bioactive has been limited. For this, liposomes with amphiphilic nature have been introduced as Pickering emulsion stabilizers but these nano-sized vesicles lack targeting specificity. Therefore in this study, superparamagnetic iron oxide nanoparticles (SPION) encapsulated within liposomes (MLP) were used as Pickering emulsion stabilizers to prepare pH and magnetic-responsive Pickering emulsions. A stable MLP-stabilized Pickering emulsion formulation was established by varying the MLP pH, concentration, and oil loading during the emulsification process. The primary stabilization mechanism of the emulsion under pH variation was identified to be largely associated with the MLP phosphate group deprotonation. When subjected to sequential pH adjustment to imitate the gastrointestinal digestion pH environment, a recovery in Pickering emulsion integrity was observed as the pH changes from acidic to alkaline. By incorporating SPION, the Pickering emulsion can be guided to the targeted site under the influence of a magnetic field without compromising emulsion stability. Overall, the results demonstrated the potential of MLP-stabilized Pickering emulsion as a dual pH- and magnetic-responsive drug delivery carrier with the ability to co-encapsulate hydrophobic and hydrophilic bioactive.
    Matched MeSH terms: Magnetite Nanoparticles/chemistry
  2. Seevanathan Y, Zawawi N, Salleh AB, Oslan SN, Ashaari NS, Amir Hamzah AS, et al.
    Carbohydr Res, 2024 Nov;545:109293.
    PMID: 39437465 DOI: 10.1016/j.carres.2024.109293
    The increasing concern over sugar-related health issues has sparked research interest in seeking alternatives to sucrose. Trehalulose, a beneficial structural isomer of sucrose, is a non-cariogenic sugar with a low glycemic and insulinemic index. Besides its potential as a sugar substitute, trehalulose exhibits high antioxidant properties, making it attractive for various industrial applications. Despite its numerous advantages and potential application in various sectors, the industrial adoption of trehalulose has yet to be established due to lack of studies on its characteristics and practical uses. This review aims to provide a comprehensive overview of the properties of trehalulose, emphasizing its health benefits. The industrial prospects of trehalulose as sweetener and reducing agent, particularly in food and beverages pharmaceutical, and cosmeceutical sectors, are explored. Additionally, the review delves into the sources of trehalulose and the diverse organisms capable of producing trehalulose. The biosynthesis of this sugar primarily involves an enzyme-mediated process. Thus, these enzymes' properties, mechanisms, and the heterologous expression of genes associated with trehalulose production are explored. The strategies discussed in this review can be improved and applied to establish trehalulose bio-factories for efficient synthesis of trehalulose in the future. With further research and development, trehalulose holds promise as a valuable component across various industries.
    Matched MeSH terms: Sweetening Agents/chemistry
  3. Ghanbarzadeh Z, Mohagheghzadeh A, Hemmati S
    Probiotics Antimicrob Proteins, 2024 Dec;16(6):2269-2304.
    PMID: 39225894 DOI: 10.1007/s12602-024-10354-9
    Antimicrobial peptides (AMPs) are the most favorable alternatives in overcoming multidrug resistance, alone or synergistically with conventional antibiotics. Plant-derived AMPs, as cysteine-rich peptides, widely compensate the pharmacokinetic drawbacks of peptide therapeutics. Compared to the putative genes encrypted in the genome, AMPs that are produced under stress are active forms with the ability to combat resistant microbial species. Within this study, plant-derived AMPs, namely, defensins, nodule-specific cysteine-rich peptides, snakins, lipid transfer proteins, hevein-like proteins, α-hairpinins, and aracins, expressed under biotic and abiotic stresses, are classified. We could observe that while α-hairpinins and snakins display a helix-turn-helix structure, conserved motif patterns such as β1αβ2β3 and β1β2β3 exist in plant defensins and hevein-like proteins, respectively. According to the co-expression data, several plant AMPs are expressed together to trigger synergistic effects with membrane disruption mechanisms such as toroidal pore, barrel-stave, and carpet models. The application of AMPs as an eco-friendly strategy in maintaining agricultural productivity through the development of transgenes and bio-pesticides is discussed. These AMPs can be consumed in packaging material, wound-dressing products, coating catheters, implants, and allergology. AMPs with cell-penetrating properties are verified for the clearance of intracellular pathogens. Finally, the dominant pharmacological activities of bioactive peptides derived from the gastrointestinal digestion of plant AMPs, namely, inhibitors of renin and angiotensin-converting enzymes, dipeptidyl peptidase IV and α-glucosidase inhibitors, antioxidants, anti-inflammatory, immunomodulating, and hypolipidemic peptides, are analyzed. Conclusively, as phytopathogens and human pathogens can be affected by plant-derived AMPs, they provide a bright perspective in agriculture, breeding, food, cosmetics, and pharmaceutical industries, translated as farm to bedside.
    Matched MeSH terms: Plants/chemistry
  4. Tjong DH, Roesma DI, Aadrean, Agustina NT, Maharani S, Azzahra I
    Pak J Biol Sci, 2024 Jun;27(7):373-379.
    PMID: 39206471 DOI: 10.3923/pjbs.2024.373.379
    <b>Background and Objective:</b> The presence of Asian small-clawed otters (<i>Aonyx cinereus</i>) in West Sumatra has been reported from ecological data in the form of footprints and feces, while its genetic information has not been reported yet. This genetic information needs to be reported along with the determination of <i>A. cinereus</i> as a vulnerable species and is experiencing population decline by the International Union for Conservation of Nature (IUCN). This study aimed to determine the phylogenetic relationship of <i>A. cinereus</i> found in West Sumatra with other regions. <b>Materials and Methods:</b> The samples used were <i>A. cinereus</i> stool collected from several wetland locations in West Sumatra. <i>Aonyx cinereus</i> DNA was extracted from stool samples following the QIAamp Fast DNA Stool Mini Kit protocol (Qiagen). Amplification was performed using the CO1 gene. The IQTree was used to provide phylogenetic information on <i>A. cinereus</i> and MEGA 7 was used to determine the uncorrected genetic distance of <i>A. cinereus</i>. <b>Results:</b> <i>Aonyx cinereus</i> clustered to form three sub-clusters namely <i>A. cinereus</i> Sundaland, Laos lineage and unknown lineage. <i>Aonyx cinereus</i> Sundaland consists of <i>A. cinereus</i> West Sumatra and <i>A. cinereus</i> Sarawak, Malaysia which are closely related with a genetic distance of 0.68%. Moreover, compared to <i>A. cinereus</i> from unknown lineage (including Captive Copenhagen Zoo) and Laos lineage, <i>A. cinereus</i> of West Sumatra had a genetic distance of 0.68-1.20 and 4.18%, respectively. <b>Conclusion:</b> Wetland conversion and the role of humans have influenced the obstacle to connectivity among populations that cause genetic variation.
    Matched MeSH terms: Feces/chemistry
  5. Kishore SC, Perumal S, Atchudan R, Edison TNJI, Sundramoorthy AK, Manoj D, et al.
    Environ Sci Pollut Res Int, 2024 Oct;31(49):58818-58829.
    PMID: 38684614 DOI: 10.1007/s11356-024-33437-0
    In this study, the fruit of Terminalia chebula, commonly known as chebulic myrobalan, is used as the precursor for carbon for its application in supercapacitors. The Terminalia chebula biomass-derived sponge-like porous carbon (TC-SPC) is synthesized using a facile and economical method of pyrolysis. TC-SPC thus obtained is subjected to XRD, FESEM, TEM, HRTEM, XPS, Raman spectroscopy, ATR-FTIR, and nitrogen adsorption-desorption analyses for their structural and chemical composition. The examination revealed that TC-SPC has a crystalline nature and a mesoporous and microporous structure accompanied by a disordered carbon framework that is doped with heteroatoms such as nitrogen and sulfur. Electrochemical studies are performed on TC-SPC using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. TC-SPC contributed a maximum specific capacitance of 145 F g-1 obtained at 1 A g-1. The cyclic stability of TC-SPC is significant with 10,000 cycles, maintaining the capacitance retention value of 96%. The results demonstrated that by turning the fruit of Terminalia chebula into an opulent product, a supercapacitor, TC-SPC generated from biomass has proven to be a potential candidate for energy storage application.
    Matched MeSH terms: Terminalia/chemistry
  6. Abdulra'uf LB, Junaid AM, Lawal AR, Ibrahim HB, Tan GH
    Food Chem, 2025 Jan 15;463(Pt 4):141464.
    PMID: 39369599 DOI: 10.1016/j.foodchem.2024.141464
    The use of pesticides has led to environmental pollution and posed a global health risk, since they remain as residues on foods. Beans one of the most widely cultivated crop in Africa, and susceptible to attack by insects both on field and during storage, leading to the application of pesticides to control pests' infestation. However, misuse of these chemicals by farmers on beans has resulted in the rejection of beans exported to European countries, due to the presence of pesticide residues at concentrations higher than the maximum residues levels (MRLs). In this study, the effectiveness of the Association Official Analytical Chemists (AOAC) Official Method and the European Committee of Standardization (CEN) Standard Method, were determined using multivariate approach for the analysis of organochlorine pesticide residues in 6 varieties of beans samples. The significance of factors (mass of sample, volume of acetonitrile, mass of magnesium sulphate, sample pH, centrifugation time and speed) affecting the efficiency of extraction was estimated using Plackett-Burman design, while central composite design was used to optimize the significant factors. The following optimum factors were subsequently used for method validation, recovery tests, and real sample analysis: 4 g of sample sludge (1:1 v/v), 10 mL of acetonitrile, 4.45 g of MgSO4, and 5 min of centrifugation at 5000 rpm. The figure of merit of analytical methodology estimated using matrix-matched internal standard calibration method gave linearity ranging from 0.25 to 500 μg/kg, with correlation coefficient (R2) greater than 0.99, the recovery ranged from 75.55 to 110.41 (RSD = 0.70-16.65), with LOD and LOQ of 0.23-1.77 μg/kg and 0.76-5.88 μg/kg, respectively.
    Matched MeSH terms: Fabaceae/chemistry
  7. Singaram S, Ramakrishnan K, Selvam J, Senthil M, Narayanamurthy V
    Arch Physiol Biochem, 2024 Aug;130(4):437-451.
    PMID: 36063413 DOI: 10.1080/13813455.2022.2114499
    Context: Sweat glands (SGs) play a vital role in thermal regulation. The function and structure are altered during the different pathological conditions.Objective: These alterations are studied through three techniques: biopsy, sweat analytes and electrical activity of SG.Methods: The morphological study of SG through biopsy and various techniques involved in quantifying sweat analytes is focussed on here. Electrical activities of SG in diabetes, neuropathy and nephropathy cases are also discussed, highlighting their limitations and future scope.Results and Conclusion: The result of this review identified three areas of the knowledge gap. The first is wearable sensors to correlate pathological conditions. Secondly, there is no device to look for its structure and quantify its associated function. Finally, therapeutic applications of SG are explored, especially for renal failure. With these aspects, this paper provides information collection and correlates SG with pathologies related to diabetes. Hence this could help researchers develop suitable technologies for the gaps identified.
    Matched MeSH terms: Sweat/chemistry
  8. Najm AS, Naeem HS, Alabboodi KO, Hasbullah SA, Hasan HA, Holi AM, et al.
    Sci Rep, 2022 Jul 22;12(1):12521.
    PMID: 35869261 DOI: 10.1038/s41598-022-16733-y
    In this study, we aimed to increase the knowledge regarding the response mechanisms which were associated with the formation of CdS thin films. CdS thin film remains the most appealing alternative for many researchers, as it has been a capable buffer material for effect in film based polycrystalline solar cells (CdTe, CIGSe, CZTS). The Linker Assisted and Chemical Bath Deposition (LA-CBD) technique, which combines the Linker Assisted (LA) technique and the chemical bath deposition (CBD) method for forming high quality CdS thin film, was presented as an efficient and novel hybrid sensitization technique. CdS films were bound to soda lime with the help of electrostatic forces, which led to the formation of the intermediate complexes [Cd (NH3)4]2+ that helped in the collision of these complexes with a soda lime slide. Salvia dye and as a linker molecule 3-Mercaptopropionic acid (MPA) was used in the one step fabrication technique. Optical results showed that the bandgap varied in the range of (2.50 to 2.17) eV. Morphological properties showed a homogeneous distribution of the particles that aspherical in shape in the CdS + MPA + Salvia dye films. This technique significantly affected on the electrical characterizations of CdS films after the annealing process. The CdS + Ag + MPA + Salvia dye films showed the maximum carrier concentration and minimum resistivity, as 5.64 × 10 18 cm-3 and 0.83 Ω cm respectively.
    Matched MeSH terms: Sulfides/chemistry
  9. Ng IMJ, Shamsi S
    Int J Mol Sci, 2022 Aug 13;23(16).
    PMID: 36012361 DOI: 10.3390/ijms23169096
    Infectious diseases are major threat due to it being the main cause of enormous morbidity and mortality in the world. Multidrug-resistant (MDR) bacteria put an additional burden of infection leading to inferior treatment by the antibiotics of the latest generations. The emergence and spread of MDR bacteria (so-called "superbugs"), due to mutations in the bacteria and overuse of antibiotics, should be considered a serious concern. Recently, the rapid advancement of nanoscience and nanotechnology has produced several antimicrobial nanoparticles. It has been suggested that nanoparticles rely on very different mechanisms of antibacterial activity when compared to antibiotics. Graphene-based nanomaterials are fast emerging as "two-dimensional wonder materials" due to their unique structure and excellent mechanical, optical and electrical properties and have been exploited in electronics and other fields. Emerging trends show that their exceptional properties can be exploited for biomedical applications, especially in drug delivery and tissue engineering. Moreover, graphene derivatives were found to have in vitro antibacterial properties. In the recent years, there have been many studies demonstrating the antibacterial effects of GO on various types of bacteria. In this review article, we will be focusing on the aforementioned studies, focusing on the mechanisms, difference between the studies, limitations and future directions.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  10. Mong GR, Liew CS, Idris R, Woon KS, Chong WWF, Chiong MC, et al.
    J Environ Manage, 2024 Sep;368:122172.
    PMID: 39137640 DOI: 10.1016/j.jenvman.2024.122172
    Driven by the need for solutions to address the global issue of waste accumulation from human activities and industries, this study investigates the thermal behaviors of empty fruit bunch (EFB), tyre waste (TW), and their blends during co-pyrolysis, exploring a potential method to convert waste into useable products. The kinetics mechanism and thermodynamics properties of EFB and TW co-pyrolysis were analysed through thermogravimetric analysis (TGA). The rate of mass loss for the blend of EFB:TW at a 1:3 mass ratio shows an increase of around 20% due to synergism. However, the blend's average activation energy is higher (298.64 kJ/mol) when compared with single feedstock pyrolysis (EFB = 257.29 kJ/mol and TW = 252.92 kJ/mol). The combination of EFB:TW at a 3:1 ratio does not result in synergistic effects on mass loss. However, a lower activation energy is reported, indicating the decomposition process can be initiated at a lower energy requirement. The reaction model that best describes the pyrolysis of EFB, TW and their blends can be categorised into the diffusion and power model categories. An equal mixture of EFB and TW was the preferred combination for co-management because of the synergistic effect, which significantly impacts the co-pyrolysis process. The mass loss rate experiences an inhibitive effect at an earlier stage (320 °C), followed by a promotional impact at the later stage (380 °C). The activation energy needed for a balanced mixture is the least compared to all tested feedstocks, even lower than the pyrolysis of a single feedstock. The study revealed the potential for increasing decomposition rates using lower energy input through the co-pyrolysis of both feedstocks. These findings evidenced that co-pyrolysis is a promising waste management and valorisation pathway to deal with overwhelming waste accumulation. Future works can be conducted at a larger scale to affirm the feasibility of EFB and TW co-management.
    Matched MeSH terms: Fruit/chemistry
  11. Chen D, Lee YY, Tan CP, Wang Y, Qiu C
    J Agric Food Chem, 2024 Sep 04;72(35):19480-19493.
    PMID: 39171455 DOI: 10.1021/acs.jafc.4c05495
    Pickering foams have great potential for applications in aerated foods, but their foaming ability and physical stability are still far from satisfactory. Herein, solid lipid particles (SLNs) were fabricated by using diacylglycerol of varying acyl chain lengths with modification by a protein. The SLNs showed different crystal polymorphisms and air-water interfacial activity. C14-DAG SLN with a contact angle ∼ 79° formed aqueous foam with supreme stability and high plasticity. Whey protein isolate and sodium caseinate (0.1 wt %) considerably enhanced the foamability and interfacial activity of SLNs and promoted the packing of particles at the bubble surface. However, high protein concentration caused foam destruction due to the competitive adsorption effect. β-sheet increased in protein after adsorption and changed the polymorphism and thermodynamic properties of SLN. The foam collapsing behaviors varied in the presence of protein. The results gave insights into fabricating ultrastable aqueous foams by using high-melting DAG particles. The obtained foams demonstrated good temperature sensitivity and plasticity, which showed promising application prospects in the food and cosmetic fields.
    Matched MeSH terms: Lipids/chemistry
  12. Ke W, Lee YY, Tan CP, Li A, Zhang Y, Wang Y, et al.
    Food Chem, 2025 Feb 01;464(Pt 2):141722.
    PMID: 39442221 DOI: 10.1016/j.foodchem.2024.141722
    Diacylglycerol (DAG) is a novel functional structural lipid, but its application in base oils remains underexplored. This research investigated the effect of three liquid oils (groundnut oil, corn oil, and flaxseed oil), with varying polyunsaturated fatty acid (PUFA) (39.60, 69.50, and 77.65 %) and DAG content (0.00, 40.00, 80.00 %), on the crystallization behaviors of palm-based oil. DAG (40.00 %), obtained through enzymatic glycerolysis and molecular distillation, was found to stabilize the binary system with good compatibility and fine crystal structure. "Liquid" DAG played a dual role: diluting solid lipids, and promoting crystallization. Increasing DAG content led to larger crystalline domain size, while higher PUFA content accelerated crystallization and increased crystal orderliness, though decreasing crystal density. These results demonstrated the clear influence of PUFA and DAG content on palm-based oil crystallization. This knowledge can guide the utilization of different unsaturated DAGs for tailored fat crystallization in food application.
    Matched MeSH terms: Plant Oils/chemistry
  13. Eng CC, Ibrahim NA, Zainuddin N, Ariffin H, Yunus WM
    ScientificWorldJournal, 2014;2014:213180.
    PMID: 25254230 DOI: 10.1155/2014/213180
    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.
    Matched MeSH terms: Aluminum Silicates/chemistry; Fruit/chemistry; Methacrylates/chemistry*; Polyesters/chemistry; Polymers/chemistry*; Silanes/chemistry*; Water/chemistry; Lactic Acid/chemistry; Arecaceae/chemistry*; Plant Preparations/chemistry; Nanoparticles/chemistry; Green Chemistry Technology/methods
  14. Bimakr M, Rahman RA, Taip FS, Adzahan NM, Sarker MZ, Ganjloo A
    Molecules, 2013 Jan 15;18(1):997-1014.
    PMID: 23322066 DOI: 10.3390/molecules18010997
    In the present study, supercritical carbon dioxide (SC-CO(2)) extraction of seed oil from winter melon (Benincasa hispida) was investigated. The effects of process variables namely pressure (150-300 bar), temperature (40-50 °C) and dynamic extraction time (60-120 min) on crude extraction yield (CEY) were studied through response surface methodology (RSM). The SC-CO(2) extraction process was modified using ethanol (99.9%) as co-solvent. Perturbation plot revealed the significant effect of all process variables on the CEY. A central composite design (CCD) was used to optimize the process conditions to achieve maximum CEY. The optimum conditions were 244 bar pressure, 46 °C temperature and 97 min dynamic extraction time. Under these optimal conditions, the CEY was predicted to be 176.30 mg-extract/g-dried sample. The validation experiment results agreed with the predicted value. The antioxidant activity and fatty acid composition of crude oil obtained under optimized conditions were determined and compared with published results using Soxhlet extraction (SE) and ultrasound assisted extraction (UAE). It was found that the antioxidant activity of the extract obtained by SC-CO(2) extraction was strongly higher than those obtained by SE and UAE. Identification of fatty acid composition using gas chromatography (GC) showed that all the extracts were rich in unsaturated fatty acids with the most being linoleic acid. In contrast, the amount of saturated fatty acids extracted by SE was higher than that extracted under optimized SC-CO(2) extraction conditions.
    Matched MeSH terms: Ethanol/chemistry; Biphenyl Compounds/chemistry; Carbon Dioxide/chemistry; Fatty Acids/chemistry; Free Radicals/chemistry; Picrates/chemistry; Plant Oils/chemistry; Seeds/chemistry*; Solvents/chemistry; Sulfonic Acids/chemistry; Free Radical Scavengers/chemistry; Cucurbitaceae/chemistry*; Benzothiazoles/chemistry
  15. Ho CL, Tan YC
    Phytochemistry, 2015 Jun;114:168-77.
    PMID: 25457484 DOI: 10.1016/j.phytochem.2014.10.016
    Basal stem rot (BSR) of oil palm roots is due to the invasion of fungal mycelia of Ganoderma species which spreads to the bole of the stem. In addition to root contact, BSR can also spread by airborne basidiospores. These fungi are able to break down cell wall components including lignin. BSR not only decreases oil yield, it also causes the stands to collapse thus causing severe economic loss to the oil palm industry. The transmission and mode of action of Ganoderma, its interactions with oil palm as a hemibiotroph, and the molecular defence responses of oil palm to the infection of Ganoderma boninense in BSR are reviewed, based on the transcript profiles of infected oil palms. The knowledge gaps that need to be filled in oil palm-Ganoderma molecular interactions i.e. the associations of hypersensitive reaction (HR)-induced cell death and reactive oxygen species (ROS) kinetics to the susceptibility of oil palm to Ganoderma spp., the interactions of phytohormones (salicylate, jasmonate and ethylene) at early and late stages of BSR, and cell wall strengthening through increased production of guaiacyl (G)-type lignin, are also discussed.
    Matched MeSH terms: Plant Oils/chemistry*; Spores, Fungal/chemistry; Plant Roots/chemistry; Ganoderma/chemistry
  16. Abou-Zied OK, Zahid NI, Khyasudeen MF, Giera DS, Thimm JC, Hashim R
    Sci Rep, 2015;5:8699.
    PMID: 25731606 DOI: 10.1038/srep08699
    Local heterogeneity in lipid self-assembly is important for executing the cellular membrane functions. In this work, we chemically modified 2-(2'-hydroxyphenyl)benzoxazole (HBO) and attached a C8 alkyl chain in two different locations to probe the microscopic environment of four lipidic phases of dodecyl β-maltoside. The fluorescence change in HBO and the new probes (HBO-1 and HBO-2) shows that in all phases (micellar, hexagonal, cubic and lamellar) three HBO tautomeric species (solvated syn-enol, anionic, and closed syn-keto) are stable. The formation of multi tautomers reflects the heterogeneity of the lipidic phases. The results indicate that HBO and HBO-1 reside in a similar location within the head group region, whereas HBO-2 is slightly pushed away from the sugar-dominated area. The stability of the solvated syn-enol tautomer is due to the formation of a hydrogen bond between the OH group of the HBO moiety and an adjacent oxygen atom of a sugar unit. The detected HBO anions was proposed to be a consequence of this solvation effect where a hydrogen ion abstraction by the sugar units is enhanced. Our results point to a degree of local heterogeneity and ionization ability in the head group region as a consequence of the sugar amphoterism.
    Matched MeSH terms: Anions/chemistry; Benzoxazoles/chemistry; Fluorescent Dyes/chemistry*; Lipids/chemistry*
  17. Jamil W, Perveen S, Shah SA, Taha M, Ismail NH, Perveen S, et al.
    Molecules, 2014 Jun 25;19(7):8788-802.
    PMID: 24968334 DOI: 10.3390/molecules19078788
    Phenoxyacetohydrazide Schiff base analogs 1-28 have been synthesized and their in vitro β-glucouoronidase inhibition potential studied. Compounds 1 (IC50=9.20±0.32 µM), 5 (IC50=9.47±0.16 µM), 7 (IC50=14.7±0.19 µM), 8 (IC50=15.4±1.56 µM), 11 (IC50=19.6±0.62 µM), 12 (IC50=30.7±1.49 µM), 15 (IC50=12.0±0.16 µM), 21 (IC50=13.7±0.40 µM) and 22 (IC50=22.0±0.14 µM) showed promising β-glucuronidase inhibition activity, better than the standard (D-saccharic acid-1,4-lactone, IC50=48.4±1.25 µM).
    Matched MeSH terms: Enzyme Inhibitors/chemistry*; Glucuronidase/chemistry; Hydrazines/chemistry*; Phenoxyacetates/chemistry*
  18. Mohd Sultan N, Johan MR
    ScientificWorldJournal, 2014;2014:184604.
    PMID: 25215315 DOI: 10.1155/2014/184604
    Gold nanoparticles (AuNPs) had been synthesized with various molarities and weights of reducing agent, monosodium glutamate (MSG), and stabilizer chitosan, respectively. The significance of chitosan as stabilizer was distinguished through transmission electron microscopy (TEM) images and UV-Vis absorption spectra in which the interparticles distance increases whilst retaining the surface plasmon resonance (SPR) characteristics peak. The most stable AuNPs occurred for composition with the lowest (1 g) weight of chitosan. AuNPs capped with chitosan size stayed small after 1 month aging compared to bare AuNPs. The ability of chitosan capped AuNPs to uptake analyte was studied by employing amorphous carbon nanotubes (α-CNT), copper oxide (Cu2O), and zinc sulphate (ZnSO4) as the target material. The absorption spectra showed dramatic intensity increased and red shifted once the analyte was added to the chitosan capped AuNPs.
    Matched MeSH terms: Gold/chemistry*; Nanotubes, Carbon/chemistry; Chitosan/chemistry*; Nanoparticles/chemistry*
  19. Rabbani G, Khan MJ, Ahmad A, Maskat MY, Khan RH
    Colloids Surf B Biointerfaces, 2014 Nov 1;123:96-105.
    PMID: 25260221 DOI: 10.1016/j.colsurfb.2014.08.035
    The primary objective of this study is to explore the interaction of β-galactosidase with copper oxide nanoparticles (CuO NPs). Steady-state absorption, fluorescence and circular dichroism (CD) spectroscopic techniques have been employed to unveil the conformational changes of β-galactosidase induced by the binding of CuO NPs. Temperature dependent fluorescence quenching results indicates a static quenching mechanism in the present case. The binding thermodynamic parameters delineate the predominant role of H-bonding and van der Waals forces between β-galactosidase and CuO NPs binding process. The binding was studied by isothermal titration calorimetry (ITC) and the result revealed that the complexation is enthalpy driven, the ΔH°<0, ΔS°<0 indicates the formation of hydrogen bonds between β-galactosidase and CuO NPs occurs. Disruption of the native conformation of the protein upon binding with CuO NPs is reflected through a reduced functionality (in terms of hydrolase activity) of the protein CuO NPs conjugate system in comparison to the native protein and CuO NPs exhibited a competitive mode of inhibition. This also supports the general belief that H-bond formation occurs with NPs is associated with a lesser extent of modification in the native structure. Morphological features and size distributions were investigated using transmission electron microscopy (TEM) and dynamic light scattering (DLS). Additionally the considerable increase in the Rh following the addition of CuO NPs accounts for the unfolding of β-galactosidase. Chemical and thermal unfolding of β-galactosidase, when carried out in the presence of CuO NPs, also indicated a small perturbation in the protein structure. These alterations in functional activity of nanoparticle bound β-galactosidase which will have important consequences should be taken into consideration while using nanoparticles for diagnostic and therapeutic purposes.
    Matched MeSH terms: beta-Galactosidase/chemistry*; Copper/chemistry*; Guanidine/chemistry*; Metal Nanoparticles/chemistry*
  20. Peik-See T, Pandikumar A, Nay-Ming H, Hong-Ngee L, Sulaiman Y
    Sensors (Basel), 2014;14(8):15227-43.
    PMID: 25195850 DOI: 10.3390/s140815227
    The fabrication of an electrochemical sensor based on an iron oxide/graphene modified glassy carbon electrode (Fe3O4/rGO/GCE) and its simultaneous detection of dopamine (DA) and ascorbic acid (AA) is described here. The Fe3O4/rGO nanocomposite was synthesized via a simple, one step in-situ wet chemical method and characterized by different techniques. The presence of Fe3O4 nanoparticles on the surface of rGO sheets was confirmed by FESEM and TEM images. The electrochemical behavior of Fe3O4/rGO/GCE towards electrocatalytic oxidation of DA was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) analysis. The electrochemical studies revealed that the Fe3O4/rGO/GCE dramatically increased the current response against the DA, due to the synergistic effect emerged between Fe3O4 and rGO. This implies that Fe3O4/rGO/GCE could exhibit excellent electrocatalytic activity and remarkable electron transfer kinetics towards the oxidation of DA. Moreover, the modified sensor electrode portrayed sensitivity and selectivity for simultaneous determination of AA and DA. The observed DPVs response linearly depends on AA and DA concentration in the range of 1-9 mM and 0.5-100 µM, with correlation coefficients of 0.995 and 0.996, respectively. The detection limit of (S/N = 3) was found to be 0.42 and 0.12 µM for AA and DA, respectively.
    Matched MeSH terms: Carbon/chemistry; Ferric Compounds/chemistry; Graphite/chemistry*; Metal Nanoparticles/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links