Displaying publications 681 - 700 of 1298 in total

Abstract:
Sort:
  1. Taib IS, Budin SB, Siti Nor Ain SM, Mohamed J, Louis SR, Das S, et al.
    J Zhejiang Univ Sci B, 2009 Nov;10(11):813-9.
    PMID: 19882755 DOI: 10.1631/jzus.B0920199
    Litsea elliptica Blume leaves have been traditionally used as medicinal herbs because of its antimutagenicity, chemopreventative and insecticidal properties. In this study, the toxic effects of L. elliptica essential oil against Sprague-Dawley rat's red blood cells (RBCs) were evaluated. L. elliptica essential oil was given by oral gavage 5 times per week for 3 treated groups in the doses of 125, 250, and 500 mg/(kg body weight), respectively, and the control group received distilled water. Full blood count, RBC osmotic fragility, RBC morphological changes, and RBC membrane lipid were analyzed 28 d after the treatment. Although L. elliptica essential oil administration had significantly different effects on hemoglobin (Hb), mean cell hemoglobin concentration (MCHC), mean cell volume (MCV), and mean cell hemoglobin (MCH) in the experimental groups as compared to the control group (P<0.05), the values were still within the normal range. L. elliptica induced morphological changes of RBC into the form of echinocyte. The percentage of echinocyte increased significantly among the treated groups in a dose-response manner (P<0.001). The concentrations of RBC membrane phospholipids and cholesterol of all treated groups were significantly lower than those of control group (P<0.001). However, the RBC membrane osmotic fragility and total proteins of RBC membrane findings did not differ significantly between control and treated groups (P>0.05). It is concluded that structural changes in the RBC membrane due to L. elliptica essential oil administration did not cause severe membrane damage.
    Matched MeSH terms: Microscopy, Electron, Scanning/methods
  2. Ibrahim Z, Amin MF, Yahya A, Aris A, Muda K
    Water Sci Technol, 2010;61(5):1279-88.
    PMID: 20220250 DOI: 10.2166/wst.2010.021
    Textile wastewater, one of the most polluted industrial effluents, generally contains substantial amount of dyes and chemicals that will cause increase in the COD, colour and toxicity of receiving water bodies if not properly treated. Current treatment methods include chemical and biological processes; the efficiency of the biological treatment method however, remains uncertain since the discharged effluent is still highly coloured. In this study, granules consisting mixed culture of decolourising bacteria were developed and the physical and morphological characteristics were determined. After the sixth week of development, the granules were 3-10 mm in diameter, having good settling property with settling velocity of 70 m/h, sludge volume index (SVI) of 90 to 130 mL/g, integrity coefficient of 3.7, and density of 66 g/l. Their abilities to treat sterilised raw textile wastewater were evaluated based on the removal efficiencies of COD (initial ranging from 200 to 3,000 mg/L), colour (initial ranging from 450 to 2000 ADMI) of sterilised raw textile wastewater with pH from 6.8 to 9.4. Using a sequential anaerobic-aerobic treatment cycle with hydraulic retention time (HRT) of 24 h, maximum removal of colour and COD achieved was 90% and 80%, respectively.
    Matched MeSH terms: Microscopy, Electron, Scanning/methods
  3. Heikal MY, Aminuddin BS, Jeevanan J, Chen HC, Sharifah S, Ruszymah BH
    Med J Malaysia, 2008 Jul;63 Suppl A:34.
    PMID: 19024970
    Normal tracheal mucociliary clearance is the key to maintaining the health and defense of respiratory airway. Therefore the present of cilia and mucous blanket are important for tracheal epithelium to function effectively. In the present study, we prepared a tissue engineered respiratory epithelium construct (TEREC) made of autologous respiratory epithelium cells, fibroblast and fibrin from sheep owns blood which replaced a created tracheal mucosal defect. Scanning electron microscopy (SEM) showed encouraging result where immature cilia were present on the surface of TEREC. This result indicates that engineered respiratory epithelium was able to function as normal tissue.
    Matched MeSH terms: Microscopy, Electron, Scanning*
  4. Siew EL, Rajab NF, Osman AB, Sudesh K, Inayat-Hussain SH
    J Biomed Mater Res A, 2009 Dec;91(3):786-94.
    PMID: 19051306 DOI: 10.1002/jbm.a.32290
    Polyhydroxyalkanoates (PHA) are naturally occurring biopolyesters that have great potential in the medical field. However, the leachables resulting from sterilization process of the biomaterials may exert toxic effect including genetic damage. Here, we demonstrate that although gamma-irradiation of poly(3-hydroxybutyrate-co-50 mol % 4-hydroxybutyrate) [P(3HB-co-4HB)] did not cause any change in the morphology by scanning electron microscopy, there was a significant degradation of this copolymer where the molecular weight was reduced by 37% after sterilization indicating the generation of leachables. Therefore, further investigation on the ability of the extract of this poststerilized copolymer to induce mutagenic effect was performed using Ames test (S. typhimurium strains TA1535 and TA1537) and umu test (S. typhimurium strain TA1535/pSK1002). Additionally, the capability of the extract to induce clastogenic effect was determined using Chinese hamster lung V79 fibroblast cells. Our results showed that with and without the presence of S9 metabolic activation, no mutagenic effects were observed in both Ames and umu tests when treated with P(3HB-co-4HB) extract. Similarly, treatment of P(3HB-co-4HB) extract in V79 fibroblast cells showed no significant production of micronuclei when compared with the positive control (Mitomycin C). Together, these results indicate that leachables of poststerilized P(3HB-co-4HB) cause no mutagenic and clastogenic effects.
    Matched MeSH terms: Microscopy, Electron, Scanning/methods
  5. Adam F, Andas J
    J Colloid Interface Sci, 2007 Jul 1;311(1):135-43.
    PMID: 17391688
    Iron and 4-(methylamino)benzoic acid have been successfully incorporated into silica extracted from rice husk. The silica/Fe/amine complex, RH-Fe(5% amine), showed a ca. 24% increase in specific surface area compared to RH-Fe. This increase was attributed to the templated formation of regular pores. The XRD showed the RH-Fe(5% amine) to be amorphous. The Friedel-Crafts benzylation reaction with toluene using RH-Fe(5% amine) showed a drastic reduction in the di-substituted products to ca. 1.0%.
    Matched MeSH terms: Microscopy, Electron, Transmission/methods
  6. Zakaria SM, Sharif Zein SH, Othman MR, Jansen JA
    J Biomed Mater Res A, 2013 Jul;101(7):1977-85.
    PMID: 23225849 DOI: 10.1002/jbm.a.34506
    Electrospinning of hydroxyapatite (HA)/polyvinyl butyral solution resulted in the formation of fibers with average diameter of 937-1440 nm. These fibers were converted into HA nanoparticles with size <100 nm after undergoing calcination treatment at 600°C. The diameter of the fiber was found to be influenced by applied voltage and spinning distance. The injection flowrate did not affect the diameter significantly. The electrospinning method successfully reduced the commercial HA particle size in the range of 400-1100 nm into <100 nm. The dispersion of the finally calcined HA nanoparticles was improved significantly after anionic sodium dodecyl sulfate surfactant was introduced. The experimental data of HA growth kinetics were subjected to the integral method of analysis, and the rate law of the reaction was found to follow the first order reaction.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  7. Kapitonova MY, Muid S, Froemming GR, Yusoff WN, Othman S, Ali AM, et al.
    Malays J Pathol, 2012 Dec;34(2):103-13.
    PMID: 23424772 MyJurnal
    Microgravity, hypergravity, vibration, ionizing radiation and temperature fluctuations are major factors of outer space flight affecting human organs and tissues. There are several reports on the effect of space flight on different human cell types of mesenchymal origin while information regarding changes to vascular endothelial cells is scarce. Ultrastructural and cytophysiological features of macrovascular endothelial cells in outer space flight and their persistence during subsequent culturing were demonstrated in the present investigation. At the end of the space flight, endothelial cells displayed profound changes indicating cytoskeletal lesions and increased cell membrane permeability. Readapted cells of subsequent passages exhibited persisting cytoskeletal changes, decreased metabolism and cell growth indicating cellular senescence.
    Matched MeSH terms: Microscopy, Electron, Scanning/methods
  8. Dehgahi R, Zakaria L, Mohamad A, Joniyas A, Subramaniam S
    Protoplasma, 2016 Sep;253(5):1373-83.
    PMID: 26471909 DOI: 10.1007/s00709-015-0895-1
    Dendrobium sonia-28 is a popular orchid hybrid due to its flowering recurrence and dense inflorescences. Unfortunately, it is being decimated by fungal diseases, especially those caused by Fusarium proliferatum. In this study, selection of F. proliferatum-tolerant protocorm-like bodies (PLBs) was carried out by assessing the effects of differing concentrations of fusaric acid (FA). PLBs were cultured on Murashige and Skoog (MS) medium supplemented with 0.05 to 0.2 millimolar (mM) concentrations of FA. Higher concentrations of FA increased mortality of PLBs and reduced their growth. The survival rate for 0.05 mM FA was 20 % but only 1 % at the highest dose of 0.2 mM. Additionally, two different size ranges of PLBs were investigated, and growth increased more at lower FA concentrations for larger PLBs, whilst the growth rate of smaller PLBs was inhibited at an FA concentration of 0.2 mM. Histological examination using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses disclosed severe cell wall and organelle damage, as well as stomatal closure in PLBs treated with the high FA concentrations. Reductions in plantlet growth were much greater at the highest concentrations of FA. Some randomly amplified polymorphic DNA (RAPD) markers clearly discriminated between selected and non-selected variants of Dendrobium sonia-28, showing different banding patterns for each FA concentration and specific bands for selected and control plants.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  9. Chang JS, Strunk J, Chong MN, Poh PE, Ocon JD
    J Hazard Mater, 2020 01 05;381:120958.
    PMID: 31416043 DOI: 10.1016/j.jhazmat.2019.120958
    While bulk zinc oxide (ZnO) is of non-toxic in nature, ZnO nanoarchitectures could potentially induce the macroscopic characteristics of oxidative, lethality and toxicity in the water environment. Here we report a systematic study through state-of-the-art controllable synthesis of multi-dimensional ZnO nanoarchitectures (i.e. 0D-nanoparticle, 1D-nanorod, 2D-nanosheet, and 3D-nanoflowers), and subsequent in-depth understanding on the fundamental factor that determines their photoactivities. The photoactivities of resultant ZnO nanoarchitectures were interpreted in terms of the photodegradation of salicylic acid as well as inactivation of Bacillus subtilis and Escherichia coli under UV-A irradiation. Photodegradation results showed that 1D-ZnO nanorods demonstrated the highest salicylic acid photodegradation efficiency (99.4%) with a rate constant of 0.0364 min-1. 1D-ZnO nanorods also exhibited the highest log reductions of B. subtilis and E. coli of 3.5 and 4.2, respectively. Through physicochemical properties standardisation, an intermittent higher k value for pore diameter (0.00097 min-1 per mm), the highest k values for crystallite size (0.00171 min-1 per nm) and specific surface area (0.00339 min-1 per m2/g) contributed to the exceptional photodegradation performance of nanorods. Whereas, the average normalised log reduction against the physicochemical properties of nanorods (i.e. low crystallite size, high specific surface area and pore diameter) caused the strongest bactericidal effect.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  10. Miswan Z, Lukman SK, Abd Majid FA, Loke MF, Saidin S, Hermawan H
    Int J Pharm, 2016 Dec 30;515(1-2):460-466.
    PMID: 27793709 DOI: 10.1016/j.ijpharm.2016.10.056
    Active ingredients of ginsenoside, Rg1 and Re, are able to inhibit the proliferation of vascular smooth muscle cells and promote the growth of vascular endothelial cells. These capabilities are of interest for developing a novel drug-eluting stent to potentially solve the current problem of late-stent thrombosis and poor endotheliazation. Therefore, this study was aimed to incorporate ginsenoside into degradable coating of poly(lactic-co-glycolic acid) (PLGA). Drug mixture composed of ginseng extract and 10% to 50% of PLGA (xPLGA/g) was coated on electropolished stainless steel 316L substrate by using a dip coating technique. The coating was characterized principally by using attenuated total reflectance-Fourier transform infrared spectroscopy, scanning electron microscopy and contact angle analysis, while the drug release profile of ginsenosides Rg1 and Re was determined by using mass spectrometry at a one month immersion period. Full and homogenous coating coverage with acceptable wettability was found on the 30PLGA/g specimen. All specimens underwent initial burst release dependent on their composition. The 30PLGA/g and 50PLGA/g specimens demonstrated a controlled drug release profile having a combination of diffusion- and swelling-controlled mechanisms of PLGA. The study suggests that the 30PLGA/g coated specimen expresses an optimum composition which is seen as practicable for developing a controlled release drug-eluting stent.
    Matched MeSH terms: Microscopy, Electron, Scanning/methods
  11. Taylor ML, Cooper RL, Schneider EL, Osborn JM
    Am J Bot, 2015 Oct;102(10):1685-702.
    PMID: 26419810 DOI: 10.3732/ajb.1500249
    A knowledge of pollen characters in early-diverging angiosperm lineages is essential for understanding pollen evolution and the role of pollen in angiosperm diversification. In this paper, we report and synthesize data on mature pollen and pollen ontogeny from all genera of Nymphaeales within a comparative, phylogenetic context and consider pollen evolution in this early-diverging angiosperm lineage. We describe mature pollen characters for Euryale, Barclaya, and Nymphaea ondinea, taxa for which little to no structural data exist.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  12. Quek JA, Lam SM, Sin JC, Mohamed AR
    PMID: 30099271 DOI: 10.1016/j.jphotobiol.2018.07.030
    Flower-like ZnO micro/nanostructures were successfully fabricated via a surfactant-free co-precipitation method. The as-synthesized product was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and photoluminescence (PL) analyses. In the presence of visible light irradiation, the as-synthesized flower-like ZnO showed higher antibacterial activities against Enterococcus faecalis (E. faecalis) and Micrococcus luteus (M. luteus) than that of commercial ZnO. The excellent antibacterial performance of synthesized flower-like ZnO was also observed via the bacterial morphological change, K+ ions leakage and protein leakage in extracellular suspension. In addition, the FTIR investigation on both treated bacteria further confirmed the bacterial membrane damage via cellular substance alteration. The enhancement of the antibacterial activity of synthesized ZnO can be attributed to the unique flower-like morphology which can increase the surface OH- groups and the quantity of photogenerated electron-hole pair available to participate in the photocatalytic reaction. The reactive oxidizing species (ROS) scavengers experiments showed that H2O2 played a main role in the photocatalytic antibacterial process. Our study showed that the synthesized flower-like ZnO micro/nanostructures can act as efficient antibacterial agents in the photocatalytic antibacterial process under visible light irradiation.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  13. Besser K, Malyon GP, Eborall WS, Paro da Cunha G, Filgueiras JG, Dowle A, et al.
    Nat Commun, 2018 12 03;9(1):5125.
    PMID: 30510200 DOI: 10.1038/s41467-018-07575-2
    Woody (lignocellulosic) plant biomass is an abundant renewable feedstock, rich in polysaccharides that are bound into an insoluble fiber composite with lignin. Marine crustacean woodborers of the genus Limnoria are among the few animals that can survive on a diet of this recalcitrant material without relying on gut resident microbiota. Analysis of fecal pellets revealed that Limnoria targets hexose-containing polysaccharides (mainly cellulose, and also glucomannans), corresponding with the abundance of cellulases in their digestive system, but xylans and lignin are largely unconsumed. We show that the limnoriid respiratory protein, hemocyanin, is abundant in the hindgut where wood is digested, that incubation of wood with hemocyanin markedly enhances its digestibility by cellulases, and that it modifies lignin. We propose that this activity of hemocyanins is instrumental to the ability of Limnoria to feed on wood in the absence of gut symbionts. These findings may hold potential for innovations in lignocellulose biorefining.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  14. Kouhi M, Jayarama Reddy V, Ramakrishna S
    Appl Biochem Biotechnol, 2019 Jun;188(2):357-368.
    PMID: 30456599 DOI: 10.1007/s12010-018-2922-0
    Bioceramic nanoparticles with high specific surface area often tend to agglomerate in the polymer matrix, which results in undesirable mechanical properties of the composites and poor cell spreading and attachment. In the present work, bredigite (BR) nanoparticles were modified with an organosilane coupling agent, 3-glycidoxypropyltrimethoxysilane (GPTMS), to enhance its dispersibility in the polymer matrix. The polyhydroxybutyrate-co-hydroxyvaletare (PHBV) nanofibrous scaffolds containing either bredigite or GPTMS-modified bredigite (G-BR) nanoparticles were fabricated using electrospinning technique and characterized using scanning electron microscopy, transmission electron microscopy, and tensile strength. Results demonstrated that modification of bredigite was effective in enhancing nanoparticle dispersion in the PHBV matrix. PHBV/G-BR scaffold showed improved mechanical properties compared to PHBV and PHBV/BR, especially at the higher concentration of nanoparticles. In vitro bioactivity assay performed in the simulated body fluid (SBF) indicated that composite PHBV scaffolds were able to induce the formation of apatite deposits after incubation in SBF. From the results of in vitro biological assay, it is concluded that the synergetic effect of BR and GPTMS provided an enhanced hFob cells attachment and proliferation. The developed PHBV/G-BR nanofibrous scaffolds may be considered for application in bone tissue engineering.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  15. Teoh XY, Bt Mahyuddin FN, Ahmad W, Chan SY
    Pharm Dev Technol, 2020 Feb;25(2):245-251.
    PMID: 31690150 DOI: 10.1080/10837450.2019.1689401
    Poor solubility and bioavailability of drugs are often affected by its microscopic structural properties. Nitrofurantoin (NF), a Biopharmaceutics Classification System class II item, has a low water solubility with low plasma concentrations. To improve its therapeutic efficacy, formulation strategy of solid dispersion (SD) and co-crystallization are compared herein. The co-crystal is prepared with citric acid in 1:1 stoichiometric ratio while SD consists of 30% w/w nitrofurantoin and 70% w/w hydroxypropyl methylcellulose (HPMC) as the carrier system. As a control, the physical mixture of NF and HPMC was prepared. All the preparations were characterized with differential scanning calorimetry (DSC), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), microscopy analysis, solubility, and dissolution studies. The formation of co-crystal, solvent evaporated, and spray-dried SD are confirmed by the ATR-FTIR where peaks shifting of several functional groups indicate the formation of the hydrogen bond. Dissolution studies showed a greater initial dissolution rate in co-crystal than SD despite the possible presence of amorphous content in the SD system. Overall, co-crystal is concluded to be a better approach than SD for an effective dissolution.
    Matched MeSH terms: Microscopy, Electron, Scanning/methods
  16. Ali HS, Khan S, York P, Shah SM, Khan J, Hussain Z, et al.
    Pak J Pharm Sci, 2017 Sep;30(5):1635-1643.
    PMID: 29084684
    Drug nanosuspensions have gained tremendous attraction as a platform in drug delivery. In the present work, a nanosuspension was prepared by a wet milling approach in order to increase saturation solubility and dissolution of the water insoluble drug, hydrocortisone. Size of the generated particeles was 290 nm ± 9 nm having a zeta potential of -1.9 mV ± 0.6 mV. Nanosized particles were found to have a rod shape with a narrow particle size distribution (PDI =0.17). Results of differential scanning calorimetry and X-ray diffraction analyses revealed minor modifications of crystallinity of hydrocortisone following the milling process. Solubility of hydrocortisone was enhanced by nanonization to 875µg/ml ±2.5, an almost 2.9-fold compared to the raw hydrocortisone. Moreover, the nanosuspension formulation substabtially enhanced the dissolution rate of hydrocortisone where >97% of the hydrocortisone was dissolved within 10 minutes opposed to 22.3% for the raw 50% for the raw hydrocortisone and the commercial tablet, respectively. The bioavailability study resulted in AUC 0-9h for HC nanosuspensions (31.50±2.50), which is significantly (p<0.05) higher compared to the AUC 0-9h (14.85±3.25) resulted for HC solution. The nanosuspension was physically stable at room temperature for 24 months.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  17. Madhavan P, Jamal F, Pei CP, Othman F, Karunanidhi A, Ng KP
    Mycopathologia, 2018 Jun;183(3):499-511.
    PMID: 29380188 DOI: 10.1007/s11046-018-0243-z
    Infections by non-albicans Candida species are a life-threatening condition, and formation of biofilms can lead to treatment failure in a clinical setting. This study was aimed to demonstrate the in vitro antibiofilm activity of fluconazole (FLU) and voriconazole (VOR) against C. glabrata, C. parapsilosis and C. rugosa with diverse antifungal susceptibilities to FLU and VOR. The antibiofilm activities of FLU and VOR in the form of suspension as well as pre-coatings were assessed by XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction assay. Morphological and intracellular changes exerted by the antifungal drugs on Candida cells were examined by scanning electron microscope (SEM) and transmission electron microscope (TEM). The results of the antibiofilm activities showed that FLU drug suspension was capable of killing C. parapsilosis and C. rugosa at minimum inhibitory concentrations (MICs) of 4× MIC FLU and 256× MIC FLU, respectively. While VOR MICs ranging from 2× to 32× were capable of killing the biofilms of all Candida spp tested. The antibiofilm activities of pre-coated FLU were able to kill the biofilms at ¼× MIC FLU and ½× MIC FLU for C. parapsilosis and C. rugosa strains, respectively. While pre-coated VOR was able to kill the biofilms, all three Candida sp at ½× MIC VOR. SEM and TEM examinations showed that FLU and VOR treatments exerted significant impact on Candida cell with various degrees of morphological changes. In conclusion, a fourfold reduction in MIC50 of FLU and VOR towards ATCC strains of C. glabrata, C. rugosa and C. rugosa clinical strain was observed in this study.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  18. Osman AF, M Fitri TF, Rakibuddin M, Hashim F, Tuan Johari SAT, Ananthakrishnan R, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 May 01;74:194-206.
    PMID: 28254285 DOI: 10.1016/j.msec.2016.11.137
    Polymer-clay based nanocomposites are among the attractive materials to be applied for various applications, including biomedical. The incorporation of the nano sized clay (nanoclay) into polymer matrices can result in their remarkable improvement in mechanical, thermal and barrier properties as long as the nanofillers are well exfoliated and dispersed throughout the matrix. In this work, exfoliation strategy through pre-dispersing process of the organically modified montmorillonite (organo-MMT) nanofiller was done to obtain ethyl vinyl acetate (EVA) nanocomposite with improved flexibility, toughness, thermal stability and biostability. Our results indicated that the degree of organo-MMT exfoliation affects its cytotoxicity level and the properties of the resulting EVA nanocomposite. The pre-dispersed organo-MMT by ultrasonication in water possesses higher degree of exfoliation as compared to its origin condition and significantly performed reduced cytotoxicity level. Beneficially, this nanofiller also enhanced the EVA flexibility, thermal stability and biostability upon the in vitro exposure. We postulated that these were due to plasticizing effect and enhanced EVA-nanofiller interactions contributing to more stable chemical bonds in the main copolymer chains. Improvement in copolymer flexibility is beneficial for close contact with human soft tissue, while enhancement in toughness and biostability is crucial to extend its life expectancy as insulation material for implantable device.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  19. Trusch F, Loebach L, Wawra S, Durward E, Wuensch A, Iberahim NA, et al.
    Nat Commun, 2018 06 14;9(1):2347.
    PMID: 29904064 DOI: 10.1038/s41467-018-04796-3
    The animal-pathogenic oomycete Saprolegnia parasitica causes serious losses in aquaculture by infecting and killing freshwater fish. Like plant-pathogenic oomycetes, S. parasitica employs similar infection structures and secretes effector proteins that translocate into host cells to manipulate the host. Here, we show that the host-targeting protein SpHtp3 enters fish cells in a pathogen-independent manner. This uptake process is guided by a gp96-like receptor and can be inhibited by supramolecular tweezers. The C-terminus of SpHtp3 (containing the amino acid sequence YKARK), and not the N-terminal RxLR motif, is responsible for the uptake into host cells. Following translocation, SpHtp3 is released from vesicles into the cytoplasm by another host-targeting protein where it degrades nucleic acids. The effector translocation mechanism described here, is potentially also relevant for other pathogen-host interactions as gp96 is found in both animals and plants.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  20. Strout G, Russell SD, Pulsifer DP, Erten S, Lakhtakia A, Lee DW
    Ann Bot, 2013 Oct;112(6):1141-8.
    PMID: 23960046 DOI: 10.1093/aob/mct172
    BACKGROUND AND AIMS: Blue-green iridescence in the tropical rainforest understorey sedge Mapania caudata creates structural coloration in its leaves through a novel photonic mechanism. Known structures in plants producing iridescent blues consist of altered cellulose layering within cell walls and in special bodies, and thylakoid membranes in specialized plastids. This study was undertaken in order to determine the origin of leaf iridescence in this plant with particular attention to nano-scale components contributing to this coloration.

    METHODS: Adaxial walls of leaf epidermal cells were characterized using high-pressure-frozen freeze-substituted specimens, which retain their native dimensions during observations using transmission and scanning microscopy, accompanied by energy-dispersive X-ray spectroscopy to identify the role of biogenic silica in wall-based iridescence. Biogenic silica was experimentally removed using aqueous Na2CO3 and optical properties were compared using spectral reflectance.

    KEY RESULTS AND CONCLUSIONS: Blue iridescence is produced in the adaxial epidermal cell wall, which contains helicoid lamellae. The blue iridescence from cell surfaces is left-circularly polarized. The position of the silica granules is entrained by the helicoid microfibrillar layers, and granules accumulate at a uniform position within the helicoids, contributing to the structure that produces the blue iridescence, as part of the unit cell responsible for 2 ° Bragg scatter. Removal of silica from the walls eliminated the blue colour. Addition of silica nanoparticles on existing cellulosic lamellae is a novel mechanism for adding structural colour in organisms.

    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links