Displaying publications 601 - 620 of 4087 in total

Abstract:
Sort:
  1. Al-Joudi FS, Iskandar ZA, Imran AK
    PMID: 18041310
    This work studied the correlations between survivin, bcl-2 and p53 in infiltrating ductal carcinoma of the breast. A total number of 382 cases were collected from 3 hospitals in northeastern Malaysia. Survivin, bcl-2 and p53 were detected by immunohistochemistry on samples prepared from tissue blocks. Significant correlations were found between tumor histological grades and tumor size and lymph node involvement. Highly significant statistical correlations (p<0.001) were found in expression of the markers under study. It is concluded that such significant correlations may imply that the alterations in the expression take place in a concerted fashion, implying that many of these cases may share common abnormalities.
    Matched MeSH terms: Microtubule-Associated Proteins/biosynthesis*; Microtubule-Associated Proteins/genetics; Neoplasm Proteins/biosynthesis*; Neoplasm Proteins/genetics; Inhibitor of Apoptosis Proteins
  2. Abd-Jamil J, Cheah CY, AbuBakar S
    Protein Eng. Des. Sel., 2008 Oct;21(10):605-11.
    PMID: 18669522 DOI: 10.1093/protein/gzn041
    A method to map the specific site on dengue virus envelope protein (E) that interacts with cells and a neutralizing antibody is developed using serially truncated dengue virus type 2 (DENV-2) E displayed on M13 phages as recombinant E-g3p fusion proteins. Recombinant phages displaying the truncated E consisting of amino acids 297-423 (EB2) and amino acids 379-423 (EB4) were neutralized by DENV-2 patient sera and the DENV-2 E-specific 3H5-1 monoclonal antibodies suggesting that the phages retained the DENV-2 E antigenic properties. The EB4 followed by EB2 recombinant phages bound the most to human monocytes (THP-1), African green monkey kidney (Vero) cells, mosquito (C6/36) cells, ScFv specific against E and C6/36 cell proteins. Two potential cell attachment sites were mapped to loop I (amino acids 297 to 312) and loop II (amino acids 379-385) of the DENV-2 E using the phage-displayed truncated DENV-2 E fragments and by the analysis of the E structure. Loop II was present only in EB4 recombinant phages. There was no competition for binding to C6/36 cell proteins between EB2 and EB4 phages. Loop I and loop II are similar to the sub-complex specific and type-specific neutralizing monoclonal antibody binding sites, respectively. Hence, it is proposed that binding and entry of DENV involves the interaction of loop I to cell surface glycosaminoglycan-motif and a subsequent highly specific interaction involving loop II with other cell proteins. The phage displayed truncated DENV-2 E is a powerful and useful method for the direct determination of DENV-2 E cell binding sites.
    Matched MeSH terms: Recombinant Fusion Proteins/genetics; Recombinant Fusion Proteins/immunology; Recombinant Fusion Proteins/metabolism*; Recombinant Fusion Proteins/chemistry; Viral Envelope Proteins/genetics; Viral Envelope Proteins/immunology; Viral Envelope Proteins/metabolism*; Viral Envelope Proteins/chemistry
  3. Peh SC, Shaminie J, Tai YC, Tan J, Gan SS
    Histopathology, 2004 Nov;45(5):501-10.
    PMID: 15500654
    Follicular lymphoma is frequently associated with t(14;18)(q32;q21) translocation. This study was undertaken to determine the pattern of Bcl-2, CD10 and Bcl-6 expression in relation to t(14;18) translocation in follicular lymphoma from a cohort of a multi-ethnic Asian population.
    Matched MeSH terms: DNA-Binding Proteins/genetics; DNA-Binding Proteins/metabolism; Proto-Oncogene Proteins/genetics; Proto-Oncogene Proteins/metabolism; Proto-Oncogene Proteins c-bcl-2/genetics; Proto-Oncogene Proteins c-bcl-2/metabolism; Proto-Oncogene Proteins c-bcl-6
  4. Chua KB, Wang LF, Lam SK, Crameri G, Yu M, Wise T, et al.
    Virology, 2001 May 10;283(2):215-29.
    PMID: 11336547
    A search for the natural host of Nipah virus has led to the isolation of a previously unknown member of the family Paramyxoviridae. Tioman virus (TiV) was isolated from the urine of fruit bats (Pteropus hypomelanus) found on the island of the same name off the eastern coast of peninsular Malaysia. An electron microscopic study of TiV-infected cells revealed spherical and pleomorphic-enveloped viral particles (100--500 nm in size) with a single fringe of embedded peplomers. Virus morphogenesis occurred at the plasma membrane of infected cells and morphological features of negative-stained ribonucleoprotein complexes were compatible with that of viruses in the family Paramyxoviridae. Serological studies revealed no cross-reactivity with antibodies against a number of known Paramyxoviridae members except for the newly described Menangle virus (MenV), isolated in Australia in 1997. Failure of PCR amplification using MenV-specific primers suggested that this new virus is related to but different from MenV. For molecular characterization of the virus, a cDNA subtraction strategy was employed to isolate virus-specific cDNA from virus-infected cells. Complete gene sequences for the nucleocapsid protein (N) and phosphoprotein (P/V) have been determined and recombinant N and V proteins produced in baculovirus. The recombinant N and V proteins reacted with porcine anti-MenV sera in Western blot, confirming the serological cross-reactivity observed during initial virus characterization. The lack of a C protein-coding region in the P/V gene, the creation of P mRNA by insertion of 2-G residues, and the results of phylogenetic analyses all indicated that TiV is a novel member of the genus Rubulavirus.
    Matched MeSH terms: Recombinant Proteins/immunology; Viral Proteins/genetics; Viral Proteins/immunology; Viral Proteins/chemistry; Nucleocapsid Proteins/genetics; Nucleocapsid Proteins/immunology; Nucleocapsid Proteins/chemistry
  5. Yeap WC, Ooi TE, Namasivayam P, Kulaveerasingam H, Ho CL
    Plant Cell Rep, 2012 Oct;31(10):1829-43.
    PMID: 22699852 DOI: 10.1007/s00299-012-1297-x
    RNA-binding proteins (RBPs) have been implicated as regulatory proteins involved in the post-transcriptional processes of gene expression in plants under various stress conditions. In this study, we report the cloning and characterization of a gene, designated as EgRBP42, encoding a member of the plant heterogeneous nuclear ribonucleoprotein (hnRNP)-like RBP family from oil palm (Elaeis guineensis Jacq.). EgRBP42 consists of two N-terminal RNA recognition motifs and a glycine-rich domain at the C-terminus. The upstream region of EgRBP42 has multiple light-responsive, stress-responsive regulatory elements and regulatory elements associated with flower development. Real-time RT-PCR analysis of EgRBP42 showed that EgRBP42 was expressed in oil palm tissues tested, including leaf, shoot apical meristem, root, female inflorescence, male inflorescence and mesocarp with the lowest transcript level in the roots. EgRBP42 protein interacted with transcripts associated with transcription, translation and stress responses using pull-down assay and electrophoretic mobility shift assay. The accumulation of EgRBP42 and its interacting transcripts were induced by abiotic stresses, including salinity, drought, submergence, cold and heat stresses in leaf discs. Collectively, the data suggested that EgRBP42 is a RBP, which responds to various abiotic stresses and could be advantageous for oil palm under stress conditions. Key message EgRBP42 may be involved in the post-transcriptional regulation of stress-related genes important for plant stress response and adaptation.
    Matched MeSH terms: Plant Proteins/genetics; Plant Proteins/metabolism*; Recombinant Proteins/genetics; Recombinant Proteins/isolation & purification; Recombinant Proteins/metabolism; RNA-Binding Proteins/genetics; RNA-Binding Proteins/metabolism*
  6. Jaafar NR, Khoiri NM, Ismail NF, Mahmood NAN, Abdul Murad AM, Abu Bakar FD, et al.
    Enzyme Microb Technol, 2020 Oct;140:109625.
    PMID: 32912685 DOI: 10.1016/j.enzmictec.2020.109625
    Endo-β-1,3-glucanase from alkalophilic bacterium, Bacillus lehensis G1 (Blg32) composed of 284 amino acids with a predicted molecular mass of 31.6 kDa is expressed in Escherichia coli and purified to homogeneity. Herein, Blg32 characteristics, substrates and product specificity as well as structural traits that might be involved in the production of sugar molecules are analysed. This enzyme functions optimally at the temperature of 70 °C, pH value of 8.0 with its catalytic activity strongly enhanced by Mn2+. Remarkably, the purified enzyme is highly stable in high temperature and alkaline conditions. It exhibits the highest activity on laminarin (376.73 U/mg) followed by curdlan and yeast β-glucan. Blg32 activity increased by 62% towards soluble substrate (laminarin) compared to insoluble substrate (curdlan). Hydrolytic products of laminarin were oligosaccharides with degree of polymerisation (DP) of 1 to 5 with the main product being laminaritriose (DP3). This suggests that the active site of Blg32 could recognise up to five glucose units. High concentration of Blg32 mainly produces glucose whilst low concentration of Blg32 yields oligosaccharides with different DP (predominantly DP3). A theoretical structural model of Blg32 was constructed and structural analysis revealed that Trp156 is involved in multiple hydrophobic stacking interactions. The amino acid was predicted to participate in substrate recognition and binding. It was also exhibited that catalytic groove of Blg32 has a narrow angle, thus limiting the substrate binding reaction. All these properties and knowledge of the subsites are suggested to be related to the possible mode of action of how Blg32 produces glucooligosaccharides.
    Matched MeSH terms: Bacterial Proteins/genetics; Bacterial Proteins/isolation & purification; Bacterial Proteins/metabolism*; Bacterial Proteins/chemistry; Recombinant Proteins/genetics; Recombinant Proteins/isolation & purification; Recombinant Proteins/metabolism; Recombinant Proteins/chemistry
  7. Siar CH, Nakano K, Ng KH, Tomida M, Nagatsuka H, Kawakami T
    Eur J Med Res, 2010 Apr 08;15(4):180-4.
    PMID: 20554499
    BACKGROUND: Squamous odontogenic tumor (SOT) is a rare benign odontogenic epithelial neoplasm. A slow-growing painless expansive swelling is the common presenting symptom. Histopathologically, SOT can be easily misdiagnosed as an acanthomatous ameloblastoma. Although Notch receptors and ligands have been shown to play a role in cell fate decisions in ameloblastomas, the role of these cell signaling molecules in SOT is unknown.

    CASE REPORT: This paper describes a case of SOT affecting the anterior mandible of a 10-year-old Indian female. The patient was treated by local surgical excision and there has been no follow-up clinical record of recurrence 5 years after primary treatment. Histo?pathological examination revealed a solid, locally-infiltrative neoplasm composed of bland-looking squamatoid islands scattered in a mature fibrous connective tissue stroma and the diagnosis was SOT. Immunohistochemical evaluation showed positive reactivity of varying intensity in the neoplastic epithelial cells for Notch1, Notch3, Notch4, and their ligands Jagged1 and Delta1. Expression patterns showed considerable overlap. No immunoreactivity was detected for Notch2 and Jagged2.

    CONCLUSIONS: Present findings suggest that Notch receptors and their ligands play differential roles in the cytodifferentiation of SOT.

    Matched MeSH terms: Calcium-Binding Proteins/metabolism*; Membrane Proteins/metabolism*; Proto-Oncogene Proteins/metabolism*; Intercellular Signaling Peptides and Proteins/metabolism*; Intracellular Signaling Peptides and Proteins; Serrate-Jagged Proteins
  8. Lim MN, Hussin NH, Othman A, Umapathy T, Baharuddin P, Jamal R, et al.
    Mol Vis, 2012;18:1289-300.
    PMID: 22665977
    The presence of multipotent human limbal stromal cells resembling mesenchymal stromal cells (MSC) provides new insights to the characteristic of these cells and its therapeutic potential. However, little is known about the expression of stage-specific embryonic antigen 4 (SSEA-4) and the embryonic stem cell (ESC)-like properties of these cells. We studied the expression of SSEA-4 surface protein and the various ESC and MSC markers in the ex vivo cultured limbal stromal cells. The phenotypes and multipotent differentiation potential of these cells were also evaluated.
    Matched MeSH terms: Eye Proteins/metabolism; Neoplasm Proteins/metabolism; Repressor Proteins/metabolism; Homeodomain Proteins/metabolism; Tumor Suppressor Proteins/metabolism
  9. Yap HY, Fung SY, Ng ST, Tan CS, Tan NH
    Int J Med Sci, 2015;12(1):23-31.
    PMID: 25552915 DOI: 10.7150/ijms.10019
    Lignosus rhinocerotis (Cooke) Ryvarden (Polyporales, Basidiomycota), also known as the tiger milk mushroom, has received much interest in recent years owing to its wide-range ethnobotanical uses and the recent success in its domestication. The sclerotium is the part with medicinal value. Using two-dimensional gel electrophoresis coupled with mass spectrometry analysis, a total of 16 non-redundant, major proteins were identified with high confidence level in L. rhinocerotis sclerotium based on its genome as custom mapping database. Some of these proteins, such as the putative lectins, immunomodulatory proteins, superoxide dismutase, and aegerolysin may have pharmaceutical potential; while others are involved in nutrient mobilization and the protective antioxidant mechanism in the sclerotium. The findings from this study provide a molecular basis for future research on potential pharmacologically active proteins of L. rhinocerotis.
    Matched MeSH terms: Fungal Proteins/isolation & purification*; Fungal Proteins/pharmacology*; Hemolysin Proteins/pharmacology
  10. Khaw LT, Ball HJ, Mitchell AJ, Grau GE, Stocker R, Golenser J, et al.
    Exp Parasitol, 2014 Oct;145:34-41.
    PMID: 25045850 DOI: 10.1016/j.exppara.2014.07.002
    We here describe the novel finding that brain endothelial cells in vitro can stimulate the growth of Plasmodium falciparum through the production of low molecular weight growth factors. By using a conditioned medium approach, we show that the brain endothelial cells continued to release these factors over time. If this mirrors the in vivo situation, these growth factors potentially would provide an advantage, in terms of enhanced growth, for sequestered parasitised red blood cells in the brain microvasculature. We observed this phenomenon with brain endothelial cells from several sources as well as a second P. falciparum strain. The characteristics of the growth factors included: <3 kDa molecular weight, heat stable, and in part chloroform soluble. Future efforts should be directed at identifying these growth factors, since blocking their production or actions might be of benefit for reducing parasite load and, hence, malaria pathology.
    Matched MeSH terms: Protozoan Proteins/analysis; Protozoan Proteins/metabolism; Intercellular Signaling Peptides and Proteins/metabolism*
  11. Hashim NH, Bharudin I, Nguong DL, Higa S, Bakar FD, Nathan S, et al.
    Extremophiles, 2013 Jan;17(1):63-73.
    PMID: 23132550 DOI: 10.1007/s00792-012-0494-4
    The psychrophilic yeast Glaciozyma antarctica demonstrated high antifreeze activity in its culture filtrate. The culture filtrate exhibited both thermal hysteresis (TH) and ice recrystallization inhibition (RI) properties. The TH of 0.1 °C was comparable to that previously reported for bacteria and fungi. A genome sequence survey of the G. antarctica genome identified a novel antifreeze protein gene. The cDNA encoded a 177 amino acid protein with 30 % similarity to a fungal antifreeze protein from Typhula ishikariensis. The expression levels of AFP1 were quantified via real time-quantitative polymerase chain reaction (RT-qPCR), and the highest expression levels were detected within 6 h of growth at -12 °C. The cDNA of the antifreeze protein was cloned into an Escherichia coli expression system. Expression of recombinant Afp1 in E. coli resulted in the formation of inclusion bodies that were subsequently denatured by treatment with urea and allowed to refold in vitro. Activity assays of the recombinant Afp1 confirmed the antifreeze protein properties with a high TH value of 0.08 °C.
    Matched MeSH terms: Recombinant Proteins/biosynthesis; Recombinant Proteins/genetics; Recombinant Proteins/isolation & purification; Recombinant Proteins/chemistry
  12. Molouki A, Hsu YT, Jahanshiri F, Abdullah S, Rosli R, Yusoff K
    Virol J, 2011;8:385.
    PMID: 21810274 DOI: 10.1186/1743-422X-8-385
    The underlying mechanisms by which Newcastle disease virus (NDV) kills cancer cells are still unclear. Recent discoveries have shown that many viruses contain Bcl-2 homology-like domains which enabled their interaction with Bcl-2 family members, and thereby accounting for their virulence and pathogenicity. Alignment of the protein sequences of Malaysian strain of NDV, known as AF2240, with those from members of the human Bcl-2 family showed many similar regions; most notably we found that its matrix (AF2240-M) protein, large (AF2240-L) protein and fusion (AF2240-F) protein all contain BH3-like regions. In addition, there are BH1-like domains in these proteins, where AF2240-F and Mcl-1 share 55% identity within this region. To further investigate our hypothesis that the presence of the BH3-like domains in these proteins may convey cytotoxicity, AF2240-M and AF2240-F genes were cloned into pFLAG and pEGFP.N2 vectors and transfected into HeLa cells. The expression of these constructs promoted cell death. As shown by flow cytometry, AF2240-M protein with deleted BH3-like region showed five-fold decrease in apoptosis. Moreover, the construct containing the N-terminal of AF2240-M showed nearly the same cell death rate as to that of the full-length protein, strongly suggesting that the BH3-like domain within this protein participates in promoting cell death. Moreover, AF2240-M transfection promoted Bax redistribution to mitochondria. Therefore, to determine whether there is any direct interaction between NDV viral proteins with some members of the Bcl-2 family, various constructs were co-transfected into HeLa cells. Co-immunoprecipitation trials showed that the AF2240-M indeed directly interacted with Bax protein via its BH3-domain, as the mutant proteins failed to interact with Bax. AF2240-F failed to interact with any of the tested proteins, although Bcl-XL slowed down the rate of cell death caused by this construct by nearly five-fold. In a parallel experiment, the level of expression of endogenous Bax and Bcl-2 after infection of HeLa cells with NDV was assessed by qRT-PCR, but no statistically significant change was observed. Consequently, the Bax/Bcl-2 ratio at the mRNA level did not alter. Overall, our study has shed additional light into the mechanisms by which NDV induces apoptosis.
    Matched MeSH terms: Viral Matrix Proteins/metabolism*; Green Fluorescent Proteins/genetics; Green Fluorescent Proteins/metabolism
  13. Song JH, Lee NY, Ichiyama S, Yoshida R, Hirakata Y, Fu W, et al.
    Clin Infect Dis, 1999 Jun;28(6):1206-11.
    PMID: 10451154
    Antimicrobial susceptibility of 996 isolates of Streptococcus pneumoniae from clinical specimens was investigated in 11 Asian countries from September 1996 to June 1997. Korea had the greatest frequency of nonsusceptible strains to penicillin with 79.7%, followed by Japan (65.3%), Vietnam (60.8%), Thailand (57.9%), Sri Lanka (41.2%), Taiwan (38.7%), Singapore (23.1%), Indonesia (21.0%), China (9.8%), Malaysia (9.0%), and India (3.8%). Serotypes 23F and 19F were the most common. Pulsed-field gel electrophoresis (PFGE) of 154 isolates from Asian countries showed several major PFGE patterns. The serotype 23F Spanish clone shared the same PFGE pattern with strains from Korea, Japan, Singapore, Taiwan, Thailand, and Malaysia. Fingerprinting analysis of pbp1a, pbp2x, and pbp2b genes of 12 strains from six countries also showed identical fingerprints of penicillin-binding protein genes in most strains. These data suggest the possible introduction and spread of international epidemic clones into Asian countries and the increasing problems of pneumococcal drug resistance in Asian countries for the first time.
    Matched MeSH terms: Bacterial Proteins*; Carrier Proteins/genetics; Penicillin-Binding Proteins
  14. Mustafa AD, Kalyanasundram J, Sabidi S, Song AA, Abdullah M, Abdul Rahim R, et al.
    BMC Biotechnol, 2019 05 14;19(1):27.
    PMID: 31088425 DOI: 10.1186/s12896-019-0522-x
    BACKGROUND: The current limitations of conventional BCG vaccines highlights the importance in developing novel and effective vaccines against tuberculosis (TB). The utilization of probiotics such as Lactobacillus plantarum for the delivery of TB antigens through in-trans surface display provides an effective and safe vaccine approach against TB. Such non-recombinant probiotic surface display strategy involves the fusion of candidate proteins with cell wall binding domain such as LysM, which enables the fusion protein to anchor the L. plantarum cell wall externally, without the need for vector genetic modification. This approach requires sufficient production of these recombinant fusion proteins in cell factory such as Escherichia coli which has been shown to be effective in heterologous protein production for decades. However, overexpression in E. coli expression system resulted in limited amount of soluble heterologous TB-LysM fusion protein, since most of it are accumulated as insoluble aggregates in inclusion bodies (IBs). Conventional methods of denaturation and renaturation for solubilizing IBs are costly, time-consuming and tedious. Thus, in this study, an alternative method for TB antigen-LysM protein solubilization from IBs based on the use of non-denaturating reagent N-lauroylsarcosine (NLS) was investigated.

    RESULTS: Expression of TB antigen-LysM fusion genes was conducted in Escherichia coli, but this resulted in IBs deposition in contrast to the expression of TB antigens only. This suggested that LysM fusion significantly altered solubility of the TB antigens produced in E. coli. The non-denaturing NLS technique was used and optimized to successfully solubilize and purify ~ 55% of the recombinant cell wall-anchoring TB antigen from the IBs. Functionality of the recovered protein was analyzed via immunofluorescence microscopy and whole cell ELISA which showed successful and stable cell wall binding to L. plantarum (up to 5 days).

    CONCLUSION: The presented NLS purification strategy enables an efficient and rapid method for obtaining higher yields of soluble cell wall-anchoring Mycobacterium tuberculosis antigens-LysM fusion proteins from IBs in E. coli.

    Matched MeSH terms: Recombinant Fusion Proteins/genetics; Recombinant Fusion Proteins/metabolism*; Recombinant Proteins/metabolism*
  15. Ameirika, Sha HX, Hwang JS
    Toxicon, 2017 Jul;133:153-161.
    PMID: 28478056 DOI: 10.1016/j.toxicon.2017.05.007
    Hydra actinoporin-like toxin-1 (HALT-1) is a 20.8 kDa pore-forming toxin isolated from Hydra magnipapillata. HALT-1 shares structural similarity with actinoporins, a family that is well known for its haemolytic and cytolytic activity. However, the precise pore-forming mechanism of HALT-1 remains an open question since little is known about the specific target binding for HALT-1. For this reason, a comprehensive proteomic analysis was performed using affinity purification and SILAC-based mass spectrometry to identify potential protein-protein interactions between mammalian HeLa cell surface proteins and HALT-1. A total of 4 mammalian proteins was identified, of which only folate receptor alpha was further verified by ELISA. Our preliminary results highlight an alternative-binding mode of HALT-1 to the human plasma membrane. This is the first evidence showing that HALT-1, an actinoporin-like protein, binds to a membrane protein, the folate receptor alpha. This study would advance our understanding of the molecular basis of toxicity of pore-forming toxins and provide new insights in the production of more potent inhibitors for the toxin-membrane receptor interactions.
    Matched MeSH terms: Membrane Proteins/metabolism; Pore Forming Cytotoxic Proteins/toxicity; Pore Forming Cytotoxic Proteins/chemistry*
  16. AlMatar M, Makky EA, AlMandeal H, Eker E, Kayar B, Var I, et al.
    Curr Mol Pharmacol, 2019;12(2):83-104.
    PMID: 30474542 DOI: 10.2174/1874467212666181126151948
    BACKGROUND: Mycobacterium tuberculosis (Mtb) is considered as one of the most efficacious human pathogens. The global mortality rate of TB stands at approximately 2 million, while about 8 to 10 million active new cases are documented yearly. It is, therefore, a priority to develop vaccines that will prevent active TB. The vaccines currently used for the management of TB can only proffer a certain level of protection against meningitis, TB, and other forms of disseminated TB in children; however, their effectiveness against pulmonary TB varies and cannot provide life-long protective immunity. Based on these reasons, more efforts are channeled towards the development of new TB vaccines. During the development of TB vaccines, a major challenge has always been the lack of diversity in both the antigens contained in TB vaccines and the immune responses of the TB sufferers. Current efforts are channeled on widening both the range of antigens selection and the range of immune response elicited by the vaccines. The past two decades witnessed a significant progress in the development of TB vaccines; some of the discovered TB vaccines have recently even completed the third phase (phase III) of a clinical trial.

    OBJECTIVE: The objectives of this article are to discuss the recent progress in the development of new vaccines against TB; to provide an insight on the mechanism of vaccine-mediated specific immune response stimulation, and to debate on the interaction between vaccines and global interventions to end TB.

    Matched MeSH terms: Bacterial Proteins/immunology; Bacterial Proteins/metabolism; Recombinant Fusion Proteins/immunology
  17. Zhang W, Jiang B, Zeng M, Duan Y, Wu Z, Wu Y, et al.
    J Virol, 2020 04 16;94(9).
    PMID: 32075929 DOI: 10.1128/JVI.01850-19
    Duck Tembusu virus (DTMUV), which is similar to other mosquito-borne flaviviruses that replicate well in most mammalian cells, is an emerging pathogenic flavivirus that has caused epidemics in egg-laying and breeding waterfowl. Immune organ defects and neurological dysfunction are the main clinical symptoms of DTMUV infection. Preinfection with DTMUV makes the virus impervious to later interferon (IFN) treatment, revealing that DTMUV has evolved some strategies to defend against host IFN-dependent antiviral responses. Immune inhibition was further confirmed by screening for DTMUV-encoded proteins, which suggested that NS2A significantly inhibited IFN-β and IFN-stimulated response element (ISRE) promoter activity in a dose-dependent manner and facilitated reinfection with duck plague virus (DPV). DTMUV NS2A was able to inhibit duck retinoic acid-inducible gene-I (RIG-I)-, and melanoma differentiation-associated gene 5 (MDA5)-, mitochondrial-localized adaptor molecules (MAVS)-, stimulator of interferon genes (STING)-, and TANK-binding kinase 1 (TBK1)-induced IFN-β transcription, but not duck TBK1- and interferon regulatory factor 7 (IRF7)-mediated effective phases of IFN response. Furthermore, we found that NS2A competed with duTBK1 in binding to duck STING (duSTING), impaired duSTING-duSTING binding, and reduced duTBK1 phosphorylation, leading to the subsequent inhibition of IFN production. Importantly, we first identified that the W164A, Y167A, and S361A mutations in duSTING significantly impaired the NS2A-duSTING interaction, which is important for NS2A-induced IFN-β inhibition. Hence, our data demonstrated that DTMUV NS2A disrupts duSTING-dependent antiviral cellular defenses by binding with duSTING, which provides a novel mechanism by which DTMUV subverts host innate immune responses. The potential interaction sites between NS2A and duSTING may be the targets of future novel antiviral therapies and vaccine development.IMPORTANCE Flavivirus infections are transmitted through mosquitos or ticks and lead to significant morbidity and mortality worldwide with a spectrum of manifestations. Infection with an emerging flavivirus, DTMUV, manifests with clinical symptoms that include lesions of the immune organs and neurological dysfunction, leading to heavy egg drop and causing serious harm to the duck industry in China, Thailand, Malaysia, and other Southeast Asian countries. Mosquito cells, bird cells, and mammalian cell lines are all susceptible to DTMUV infection. An in vivo study revealed that BALB/c mice and Kunming mice were susceptible to DTMUV after intracerebral inoculation. Moreover, there are no reports about DTMUV-related human disease, but antibodies against DTMUV and viral RNA were detected in serum samples of duck industry workers. This information implies that DTMUV has expanded its host range and may pose a threat to mammalian health. However, the pathogenesis of DTMUV is largely unclear. Our results show that NS2A strongly blocks the STING-induced signal transduction cascade by binding with STING, which subsequently blocks STING-STING binding and TBK1 phosphorylation. More importantly, the W164, Y167, or S361 residues in duSTING were identified as important interaction sites between STING and NS2A that are vital for NS2A-induced IFN production and effective phases of IFN response. Uncovering the mechanism by which DTMUV NS2A inhibits IFN in the cells of its natural hosts, ducks, will help us understand the role of NS2A in DTMUV pathogenicity.
    Matched MeSH terms: Membrane Proteins; Viral Proteins/metabolism*; Viral Nonstructural Proteins/metabolism
  18. Ling Q, Sadali NM, Soufi Z, Zhou Y, Huang B, Zeng Y, et al.
    Nat Plants, 2021 05;7(5):655-666.
    PMID: 34007040 DOI: 10.1038/s41477-021-00916-y
    The maturation of green fleshy fruit to become colourful and flavoursome is an important strategy for plant reproduction and dispersal. In tomato (Solanum lycopersicum) and many other species, fruit ripening is intimately linked to the biogenesis of chromoplasts, the plastids that are abundant in ripe fruit and specialized for the accumulation of carotenoid pigments. Chromoplasts develop from pre-existing chloroplasts in the fruit, but the mechanisms underlying this transition are poorly understood. Here, we reveal a role for the chloroplast-associated protein degradation (CHLORAD) proteolytic pathway in chromoplast differentiation. Knockdown of the plastid ubiquitin E3 ligase SP1, or its homologue SPL2, delays tomato fruit ripening, whereas overexpression of SP1 accelerates ripening, as judged by colour changes. We demonstrate that SP1 triggers broader effects on fruit ripening, including fruit softening, and gene expression and metabolism changes, by promoting the chloroplast-to-chromoplast transition. Moreover, we show that tomato SP1 and SPL2 regulate leaf senescence, revealing conserved functions of CHLORAD in plants. We conclude that SP1 homologues control plastid transitions during fruit ripening and leaf senescence by enabling reconfiguration of the plastid protein import machinery to effect proteome reorganization. The work highlights the critical role of chromoplasts in fruit ripening, and provides a theoretical basis for engineering crop improvements.
    Matched MeSH terms: Arabidopsis Proteins/metabolism; Arabidopsis Proteins/physiology; Chloroplast Proteins/metabolism*
  19. Trung NB, Nan FH, Lee MC, Loh JY, Gong HY, Lu MW, et al.
    Fish Shellfish Immunol, 2021 Dec;119:587-601.
    PMID: 34743023 DOI: 10.1016/j.fsi.2021.11.001
    Toll-like receptors (TLRs) are evolutionarily conserved proteins of pattern recognition receptors (PRRs) and play a crucial role in innate immune systems recognition of conserved pathogen-related molecular samples (PAMPs). We identified and characterized TLR18 from Nile tilapia (Oreochromis niloticus), OnTLR18, to elucidate its role in tissue expression patterns, modulation of gene expression after microbial challenge and TLR ligands, subcellular localization in fish and human cells, and the possible effectors TLR18 induces in a melanomacrophage-like cell line (tilapia head kidney (THK) cells). OnTLR18 expression was detected in all tissues examined, with the highest levels in the intestine and the lowest in the liver. OnTLR18 transcript was up-regulated in immune-related organs after bacterial and polyinosinic-polycytidylic acid (poly I:C) challenges and in the THK cells after lipopolysaccharide (LPS) stimulation. In transfected THK and human embryonic kidney (HEK) 293 cells, OnTLR18 localizes in the intracellular compartment. OnMyD88 and OnTRIF, but not OnTIRAP, were co-immunoprecipitated with OnTLR18, suggesting that the former two molecules are recruited by OnTLR18 as adaptors. The constitutively active form of OnTLR18 induced the production of pro-inflammatory cytokines, type I interferon (IFN), and antimicrobial peptides such as tumor necrosis factor α, interferon (IFN) d2.13, tilapia piscidin (TP)2, TP3, TP4, and hepcidin in THK cells. Our results suggest that OnTLR18 plays an important role in innate immunity through initiating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and IFN signaling pathways via OnMyD88 and OnTRIF and induces the production of various effectors in melanomacrophages.
    Matched MeSH terms: Fish Proteins/genetics; Fish Proteins/metabolism; Adaptor Proteins, Vesicular Transport; Adaptor Proteins, Signal Transducing
  20. Kumar P, Gaur P, Kumari R, Lal SK
    J Cell Biochem, 2019 04;120(4):6449-6458.
    PMID: 30335904 DOI: 10.1002/jcb.27935
    Neuraminidase protein (NA) of influenza A virus (IAV) is popularly known for its sialidase function to assist in the release of progeny virus. However, involvement of NA in other stages of the IAV life cycle also indicates its multifunctional nature and necessity to interact with other host proteins. Here, we report a host protein-heat shock protein 90 (Hsp90), as a novel interacting partner of IAV NA. A classical yeast two-hybrid screen was conducted to identify a new host interacting partner for NA and the interaction was further validated by coimmunoprecipitation from cells, transiently expressing both proteins and also from IAV-infected cells. Confocal imaging showed that both proteins colocalized in the cytoplasm in transfected host cells. Interestingly, increased levels of NA in the presence of Hsp90 was observed, which tends to decrease if adenosine triphosphatase activity of Hsp90 is inhibited using 17-N-allylamino-17-demethoxygeldanamycin (17AAG). This establishes viral NA as a client protein of host chaperone Hsp90 contributing toward NA's stability via the NA-Hsp90 interaction. This is the first report showing the interaction of NA with Hsp90 and its role in stabilizing viral NA thus preventing it from degradation. Enhanced cell survival in the presence of this interaction was also observed, thus suggesting the requirement of stable viral NA, post-IAV infection, for efficient virus production in infected mammalian cells.
    Matched MeSH terms: Viral Proteins/metabolism*; Viral Proteins/chemistry*; HSP90 Heat-Shock Proteins/metabolism*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links