Displaying publications 581 - 600 of 942 in total

Abstract:
Sort:
  1. Trottet A, Wilson B, Sew Wei Xin G, George C, Casten L, Schmoker C, et al.
    Environ Manage, 2018 02;61(2):275-290.
    PMID: 29204675 DOI: 10.1007/s00267-017-0966-5
    Resting strategies of planktonic organisms are important for the ecological processes of coastal waters and their impacts should be taken into consideration in management of water bodies used by multiple industries. We combined different approaches to evaluate the importance of resting stages in Singapore coastal waters. We used molecular approaches to improve the knowledge on Singapore biodiversity, we sampled and extracted cysts from sediments to evaluate the density of resting stages in Johor Strait, and we compared systematically information on Singapore planktonic biodiversity to existing published information on resting stages from these reported organisms. This is the first study evaluating the importance of resting stages in Singapore waters. Above 120 species reported in Singapore are known to produce resting stages though no previous work has ever been done to evaluate the importance of these strategies in these waters. The results from the resting stage survey confirmed 0.66 to 5.34 cyst g-1 dry weight sediment were present in the Johor Strait suggesting that cysts may be flushed by tidal currents into and out of the strait regularly. This also suggest that the blooms occurring in Singapore are likely due to secondary growth of Harmful Algae Bloom species in the water rather than from direct germination of cysts from sediment. Finally, we discuss the importance of these resting eggs for three main national industries in Singapore (shipping, marine aquaculture and provision of drinking water through seawater desalination). We argue that this study will serve as a baseline for some of the future management of Singapore waters.
    Matched MeSH terms: Bacteria/isolation & purification*; DNA, Bacterial/analysis
  2. Loh EYX, Mohamad N, Fauzi MB, Ng MH, Ng SF, Mohd Amin MCI
    Sci Rep, 2018 02 13;8(1):2875.
    PMID: 29440678 DOI: 10.1038/s41598-018-21174-7
    Bacterial cellulose (BC)/acrylic acid (AA) hydrogel has successfully been investigated as a wound dressing for partial-thickness burn wound. It is also a promising biomaterial cell carrier because it bears some resemblance to the natural soft tissue. This study assessed its ability to deliver human epidermal keratinocytes (EK) and dermal fibroblasts (DF) for the treatment of full-thickness skin lesions. In vitro studies demonstrated that BC/AA hydrogel had excellent cell attachment, maintained cell viability with limited migration, and allowed cell transfer. In vivo wound closure, histological, immunohistochemistry, and transmission electron microscopy evaluation revealed that hydrogel alone (HA) and hydrogel with cells (HC) accelerated wound healing compared to the untreated controls. Gross appearance and Masson's trichrome staining indicated that HC was better than HA. This study suggests the potential application of BC/AA hydrogel with dual functions, as a cell carrier and wound dressing, to promote full-thickness wound healing.
    Matched MeSH terms: Bacteria/chemistry
  3. Chung PY, Khanum R
    J Microbiol Immunol Infect, 2017 Aug;50(4):405-410.
    PMID: 28690026 DOI: 10.1016/j.jmii.2016.12.005
    Bacterial resistance to commonly used drugs has become a global health problem, causing increased infection cases and mortality rate. One of the main virulence determinants in many bacterial infections is biofilm formation, which significantly increases bacterial resistance to antibiotics and innate host defence. In the search to address the chronic infections caused by biofilms, antimicrobial peptides (AMP) have been considered as potential alternative agents to conventional antibiotics. Although AMPs are commonly considered as the primitive mechanism of immunity and has been extensively studied in insects and non-vertebrate organisms, there is now increasing evidence that AMPs also play a crucial role in human immunity. AMPs have exhibited broad-spectrum activity against many strains of Gram-positive and Gram-negative bacteria, including drug-resistant strains, and fungi. In addition, AMPs also showed synergy with classical antibiotics, neutralize toxins and are active in animal models. In this review, the important mechanisms of action and potential of AMPs in the eradication of biofilm formation in multidrug-resistant pathogen, with the goal of designing novel antimicrobial therapeutics, are discussed.
    Matched MeSH terms: Bacteria/drug effects*; Bacterial Physiological Phenomena*
  4. Rizan N, Yew CY, Niknam MR, Krishnasamy J, Bhassu S, Hong GZ, et al.
    Sci Rep, 2018 01 17;8(1):896.
    PMID: 29343758 DOI: 10.1038/s41598-017-18825-6
    The exciting discovery of the semiconducting-like properties of deoxyribonucleic acid (DNA) and its potential applications in molecular genetics and diagnostics in recent times has resulted in a paradigm shift in biophysics research. Recent studies in our laboratory provide a platform towards detecting charge transfer mechanism and understanding the electronic properties of DNA based on the sequence-specific electronic response, which can be applied as an alternative to identify or detect DNA. In this study, we demonstrate a novel method for identification of DNA from different shrimp viruses and bacteria using electronic properties of DNA obtained from both negative and positive bias regions in current-voltage (I-V) profiles. Characteristic electronic properties were calculated and used for quantification and further understanding in the identification process. Aquaculture in shrimp industry is a fast-growing food sector throughout the world. However, shrimp culture in many Asian countries faced a huge economic loss due to disease outbreaks. Scientists have been using specific established methods for detecting shrimp infection, but those methods do have their significant drawbacks due to many inherent factors. As such, we believe that this simple, rapid, sensitive and cost-effective tool can be used for detection and identification of DNA from different shrimp viruses and bacteria.
    Matched MeSH terms: Bacteria/genetics; Bacterial Infections/genetics; Bacterial Infections/microbiology
  5. John DV, Aryalakshmi B, Deora H, Purushottam M, Raju R, Mahadevan A, et al.
    Trop Biomed, 2022 Dec 01;39(4):489-498.
    PMID: 36602206 DOI: 10.47665/tb.39.4.002
    Despite clinical suspicion of an infection, brain abscess samples are often culture-negative in routine microbiological testing. Direct PCR of such samples enables the identification of microbes that may be fastidious, non-viable, or unculturable. Brain abscess samples (n = 217) from neurosurgical patients were subjected to broad range 16S rRNA gene PCR and sequencing for bacteria. All these samples and seven formalin-fixed paraffin-embedded tissue (FFPE) samples were subjected to species-specific 18S rRNA PCR for neurotropic free-living amoeba that harbour pathogenic bacteria. The concordance between smear and/or culture and PCR was 69%. One-third of the samples were smear- and culture-negative for bacterial agents. However, 88% of these culture-negative samples showed the presence of bacterial 16S rRNA by PCR. Sanger sequencing of 27 selected samples showed anaerobic/fastidious gram negative bacteria (GNB, 38%), facultative Streptococci (35%), and aerobic GNB (27%). Targeted metagenomics sequencing of three samples showed multiple bacterial species, including anaerobic and non-culturable bacteria. One FFPE tissue revealed the presence of Acanthamoeba 18S rRNA. None of the frozen brain abscess samples tested was positive for 18S rRNA of Acanthamoeba or Balamuthia mandrillaris. The microbial 16/18S rRNA PCR and sequencing outperformed culture in detecting anaerobes, facultative Streptococci and FLA in brain abscess samples. Genetic analyses of 16S/18S sequences, either through Sanger or metagenomic sequencing, will be an essential diagnostic technology to be included for diagnosing culture-negative brain abscess samples. Characterizing the microbiome of culture-negative brain abscess samples by molecular methods could enable detection and/or treatment of the source of infection.
    Matched MeSH terms: Bacteria/genetics; DNA, Bacterial/genetics
  6. Abubakar U, Al-Anazi M, Alanazi Z, Rodríguez-Baño J
    J Infect Public Health, 2023 Mar;16(3):320-331.
    PMID: 36657243 DOI: 10.1016/j.jiph.2022.12.022
    BACKGROUND: There is paucity of data describing the impact of COVID-19 pandemic on antimicrobial resistance. This review evaluated the changes in the rate of multidrug resistant gram negative and gram positive bacteria during the COVID-19 pandemic.

    METHODS: A search was conducted in PubMed, Science Direct, and Google Scholar databases to identify eligible studies. Studies that reported the impact of COVID-19 pandemic on carbapenem-resistant Acinetobacter baumannii (CRAB), carbapenem-resistant Enterobacteriaceae (CRE), extended-spectrum beta-lactamase inhibitor (ESBL)-producing Enterobacteriaceae, vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Pseudomonas aeruginosa (CPE) were selected. Studies published in English language from the start of COVID-19 pandemic to July 2022 were considered for inclusion.

    RESULTS: Thirty eligible studies were selected and most of them were from Italy (n = 8), Turkey (n = 3) and Brazil (n = 3). The results indicated changes in the rate of multidrug resistant bacteria, and the changes varied between the studies. Most studies (54.5%) reported increase in MRSA infection/colonization during the pandemic, and the increase ranged from 4.6 to 170.6%. Five studies (55.6%) reported a 6.8-65.1% increase in VRE infection/colonization during the pandemic. A 2.4-58.2% decrease in ESBL E. coli and a 1.8-13.3% reduction in ESBL Klebsiella pneumoniae was observed during the pandemic. For CRAB, most studies (58.3%) reported 1.5-621.6% increase in infection/colonization during the pandemic. Overall, studies showed increase in the rate of CRE infection/colonization during the pandemic. There was a reduction in carbapenem-resistant E. coli during COVID-19 pandemic, and an increase in carbapenem-resistant K. pneumoniae. Most studies (55.6%) showed 10.4 - 40.9% reduction in the rate of CRPA infection during the pandemic.

    CONCLUSION: There is an increase in the rate of multidrug resistant gram positive and gram negative bacteria during the COVID-19 pandemic. However, the rate of ESBL-producing Enterobacteriaceae and CRPA has decrease during the pandemic. Both infection prevention and control strategies and antimicrobial stewardship should be strengthen to address the increasing rate of multidrug resistant gram positive and gram negative bacteria.

    Matched MeSH terms: Gram-Negative Bacteria; Gram-Positive Bacteria
  7. Siew SW, Musa SM, Sabri N', Farida Asras MF, Ahmad HF
    Environ Res, 2023 Feb 15;219:115139.
    PMID: 36565841 DOI: 10.1016/j.envres.2022.115139
    The disposal of healthcare waste without prior elimination of pathogens and hazardous contaminants has negative effects on the environment and public health. This study aimed to profile the complete microbial community and correlate it with the antibiotic compounds identified in microwave pre-treated healthcare wastes collected from three different waste operators in Peninsular Malaysia. The bacterial and fungal compositions were determined via amplicon sequencing by targeting the full-length 16S rRNA gene and partial 18S with full-length ITS1-ITS2 regions, respectively. The antibiotic compounds were characterized using high-throughput spectrometry. There was significant variation in bacterial and fungal composition in three groups of samples, with alpha- (p-value = 0.04) and beta-diversity (p-values <0.006 and bacteria Proteus mirabilis, Enterococcus faecium, and Enterococcus faecalis were found in modest quantities. A total of 19 antibiotic compounds were discovered and linked with the microbial abundance detected in the healthcare waste samples. The principal component analysis demonstrated a positive antibiotic-bacteria correlation for genera Pseudomonas, Aerococcus, Comamonas, and Vagococcus, while the other bacteria were negatively linked with antibiotics. Nevertheless, deep bioinformatic analysis confirmed the presence of blaTEM-1 and penP which are associated with the production of class A beta-lactamase and beta-lactam resistance pathways. Microorganisms and contaminants, which serve as putative indicators in healthcare waste treatment evaluation revealed the ineffectiveness of microbial inactivation using the microwave sterilization method. Our findings suggested that the occurrence of clinically relevant microorganisms, antibiotic contaminants, and associated antibiotic resistance genes (ARGs) represent environmental and human health hazards when released into landfills via ARGs transmission.
    Matched MeSH terms: Anti-Bacterial Agents/analysis; Anti-Bacterial Agents/pharmacology; Bacteria/genetics; Genes, Bacterial
  8. Hassan H, O'Hare MD, Felmingham D
    Singapore Med J, 1990 Feb;31(1):56-8.
    PMID: 2139737
    The in vitro activity of teicoplanin and A16686, two new glycopeptide antibiotics was determined against 196 isolates of anaerobic bacteria. The activity of teicoplanin and A16686, in comparison with that of vancomycin, clindamycin, erythromycin and fusidic acid was 2 to 16 times higher against the gram positive anaerobes, namely, Propionibacterium acnes, Clostridium perfringens, Clostridium difficile, Clostridium species, Peptococcus species and Peptostreptococcus species. However, Bacteroides fragilis was resistant to teicoplanin and A16686 while Bacteroides melaninogenicus and Bacteroides bivius were found to be sensitive.
    Matched MeSH terms: Bacteria, Anaerobic/drug effects*
  9. Kardi SN, Ibrahim N, Darzi GN, Rashid NAA, Villaseñor J
    Environ Sci Pollut Res Int, 2017 Aug;24(23):19444-19457.
    PMID: 28580546 DOI: 10.1007/s11356-017-9204-1
    This work studied the performance of a laboratory-scale microbial fuel cell (MFC) using a bioanode that consisted of treated clinoptilolite fine powder coated onto graphite felt (TC-MGF). The results were compared with another similar MFC that used a bare graphite felt (BGF) bioanode. The anode surfaces provided active sites for the adhesion of the bacterial consortium (NAR-2) and the biodegradation of mono azo dye C.I. Acid Red 27. As a result, bioelectricity was generated in both MFCs. A 98% decolourisation rate was achieved using the TC-MGF bioanode under a fed-batch operation mode. Maximum power densities for BGF and TC-MGF bioanodes were 458.8 ± 5.0 and 940.3 ± 4.2 mW m-2, respectively. GC-MS analyses showed that the dye was readily degraded in the presence of the TC-MGF bioanode. The MFC using the TC-MGF bioanode showed a stable biofilm with no biomass leached out for more than 300 h operation. In general, MFC performance was substantially improved by the fabricated TC-MGF bioanode. It was also found that the TC-MGF bioanode with the stable biofilm presented the nature of exopolysaccharide (EPS) structure, which is suitable for the biodegradation of the azo dye. In fact, the EPS facilitated the shuttling of electrons to the bioanode for the generation of bioelectricity.
    Matched MeSH terms: Bacteria/metabolism
  10. Nik Zuraina NMN, Mohamad S, Hasan H, Goni MD, Suraiya S
    Pathog Glob Health, 2023 Feb;117(1):63-75.
    PMID: 35331083 DOI: 10.1080/20477724.2022.2028378
    Respiratory tract infections (RTIs), including pneumonia and pulmonary tuberculosis, are among the leading causes of death worldwide. The use of accurate diagnostic tests is crucial to initiate proper treatment and therapy to reduce the mortality rates for RTIs. A PCR assay for simultaneous detection of six respiratory bacteria: Haemophilus influenzae, Klebsiella pneumoniae, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus pneumoniae, was developed in our lab. The current study aimed to evaluate the performance of this assay along with the retrospective surveillance of respiratory pathogens at a teaching hospital in Kelantan, Malaysia. Leftover sputa (n = 200) from clinical laboratories were collected and undergone DNA template preparation for PCR analysis. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the PCR assay were determined in comparison with the gold standard sputum culture. Overall, the accuracy performance of this assay was 94.67% (95% CI: 90.87% to 97.21%) with sensitivity, specificity, PPV and NPV of 100%, 91.67%, 87.1% and 100%, respectively. Based on the organisms detected from sputa, K. pneumoniae ranked as the top isolate (n = 48), followed by P. aeruginosa (n = 13) and H. influenzae (n = 10). Surveillance among the patients showed that the associations of bacterial positive with gender and means of acquisition were found significant (p values = 0.049 and 0.001, respectively). Besides the promising performance of this ready-to-use molecular-based assay for the rapid detection of selected bacteria pathogens, this study also highlighted significant spread of K. pneumoniae RTIs in the community.
    Matched MeSH terms: Anti-Bacterial Agents; Bacteria/genetics
  11. Boo NY, Nordiah AJ, Alfizah H, Nor-Rohaini AH, Lim VK
    J Hosp Infect, 2001 Dec;49(4):274-81.
    PMID: 11740876
    The objective of this study was to compare the rates of bacterial contamination of expressed breast milk (EBM) obtained by manual expression and breast pumps in mothers of very low birthweight (VLBW) infants (<1501 g). This was a randomized, controlled study carried out on 28 mothers of such babies and 92 specimens of EBM were collected: 41 specimens from 13 mothers assigned to the manual group and 51 specimens from 15 mothers in the breast-pump group. EBM was cultured quantitatively by the Miles and Misra method. Breast milk expressed by breast pumps (86.3% or 44/51 specimens) had a significantly higher rate of bacterial contamination than milk expressed by the manual method (61.0% or 25/41 specimens) (P= 0.005). When breast milk was expressed in the hospital, there was no significant difference in contamination rates between the two methods. When breast milk was expressed at home, the rates of bacterial contamination by staphylococci (P= 0.003) and Gram-negative bacilli (P= 0.002) were significantly higher in the breast-pump group than the manual group. In conclusion, the rate of bacterial contamination of EBM of mothers of VLBW infants was high, especially when EBM was obtained by the breast pump or when expression was carried out at home.
    Matched MeSH terms: Bacteria/isolation & purification*
  12. Karimi E, Jaafar HZ, Ahmad S
    Molecules, 2011 May 27;16(6):4438-50.
    PMID: 21623314 DOI: 10.3390/molecules16064438
    A local herb, Kacip Fatimah, is famous amongst Malay women for its uses in parturition; however, its phytochemical contents have not been fully documented. Therefore, a study was performed to evaluate the phenolics, flavonoids, and total saponin contents, and antibacterial and antifungal properties of the leaf, stem and root of three varieties of Labisia pumila Benth. Total saponins were found to be higher in the leaves of all three varieties, compared to the roots and stems. Leaves of var. pumila exhibited significantly higher total saponin content than var. alata and lanceolata, with values of 56.4, 43.6 and 42.3 mg diosgenin equivalent/g dry weight, respectively. HPLC analyses of phenolics and flavonoids in all three varieties revealed the presence of gallic acid, caffeic acid, rutin, and myricetin in all plant parts. Higher levels of flavonoids (rutin, quercitin, kaempferol) were observed in var. pumila compared with alata and lanceolata, whereas higher accumulation of phenolics (gallic acid, pyrogallol) was recorded in var. alata, followed by pumila and lanceolata. Antibacterial activities of leaf, stem and root extracts of all varieties determined against both Gram positive (Micrococcus luteus, Bacillus subtilis B145, Bacillus cereus B43, Staphylococcus aureus S1431) and Gram negative (Enterobacter aerogenes, Klebsiella pneumonia K36, Escherichia coli E256, Pseudomonas aeruginosa PI96) pathogens showed that crude methanolic extracts are active against these bacteria at low concentrations, albeit with lower antibacterial activity compared to kanamycin used as the control. Antifungal activity of methanolic extracts of all plant parts against Fusarium sp., Candida sp. and Mucor using the agar diffusion disc exhibited moderate to appreciable antifungal activities compared to streptomycin used as positive control.
    Matched MeSH terms: Gram-Positive Bacteria/drug effects*
  13. Hauptmann AL, Paulová P, Castro-Mejía JL, Hansen LH, Sicheritz-Pontén T, Mulvad G, et al.
    Food Microbiol, 2020 Feb;85:103305.
    PMID: 31500717 DOI: 10.1016/j.fm.2019.103305
    The practices of preparing traditional foods in the Arctic are rapidly disappearing. Traditional foods of the Arctic represent a rarity among food studies in that they are meat-sourced and prepared in non-industrial settings. These foods, generally consumed without any heating step prior to consumption, harbor an insofar undescribed microbiome. The food-associated microbiomes have implications not only with respect to disease risk, but might also positively influence host health by transferring a yet unknown diversity of live microbes to the human gastrointestinal tract. Here we report the first study of the microbial composition of traditionally dried fish prepared according to Greenlandic traditions and their industrial counterparts. We show that dried capelin prepared according to traditional methods have microbiomes clearly different from industrially prepared capelin, which also have more homogenous microbiomes than traditionally prepared capelin. Interestingly, the locally preferred type of traditionally dried capelin, described to be tastier than other traditionally dried capelin, contains bacteria that potentially confer distinct taste. Finally, we show that dried cod have comparably more homogenous microbiomes when compared to capelin and that in general, the environment of drying is a major determinant of the microbial composition of these indigenous food products.
    Matched MeSH terms: Bacteria/classification
  14. Cheah PB, Gan SP
    J Food Prot, 2000 Mar;63(3):404-7.
    PMID: 10716573
    The antioxidant and microbial stabilities of galangal (Alpinia galanga) extract in raw minced beef were examined at 4 +/- 1 degree C. Raw minced beef containing galangal extracts (0 to 0.10%, wt/wt) were prepared. Lipid oxidation during refrigerated storage was assessed by monitoring malonaldehyde formation, using the thiobarbituric acid reactive substances method. In minced beef, added galangal extract improved oxidative stability. Galangal extract at higher concentrations of 0.05% and 0.10% (wt/wt) were also found to extend the shelf-life of minced beef. Addition of alpha-tocopherol (0.02%, wt/wt) to galangal extract (0.05%, wt/wt) were observed to increase the oxidative but not the microbial stability of minced beef during the storage of 7 days. Galangal extract may prove useful in inhibiting lipid oxidation and increasing microbial stability of minced meat.
    Matched MeSH terms: Bacteria/drug effects*
  15. Akili AWR, Hardianto A, Latip J, Permana A, Herlina T
    Molecules, 2023 Dec 08;28(24).
    PMID: 38138500 DOI: 10.3390/molecules28248010
    The emergence of antimicrobial resistance due to the widespread and inappropriate use of antibiotics has now become the global health challenge. Flavonoids have long been reported to be a potent antimicrobial agent against a wide range of pathogenic microorganisms in vitro. Therefore, new antibiotics development based on flavonoid structures could be a potential strategy to fight against antibiotic-resistant infections. This research aims to screen the potency of flavonoids of the genus Erythrina as an inhibitor of bacterial ATPase DNA gyrase B. From the 378 flavonoids being screened, 49 flavonoids show potential as an inhibitor of ATPase DNA gyrase B due to their lower binding affinity compared to the inhibitor and ATP. Further screening for their toxicity, we identified 6 flavonoids from these 49 flavonoids, which are predicted to have low toxicity. Among these flavonoids, erystagallin B (334) is predicted to have the best pharmacokinetic properties, and therefore, could be further developed as new antibacterial agent.
    Matched MeSH terms: Bacteria/metabolism
  16. Fathilah AR, Rahim ZH, Othman Y, Yusoff M
    Pak J Biol Sci, 2009 Mar 15;12(6):518-21.
    PMID: 19580002
    In this study, the bacteriostatic effect of Piper betle and Psidium guajava extracts on selected early dental plaque bacteria was investigated based on changes in the doubling time (g) and specific growth rates (micro). Streptococcus sanguinis, Streptococcus mitis and Actinomyces sp. were cultured in Brain Heart Infusion (BHI) in the presence and absence of the extracts. The growth of bacteria was monitored periodically every 15 min over a period of 9 h to allow for a complete growth cycle. Growth profiles of the bacteria in the presence of the extracts were compared to those in the absence and deviation in the g and micro were determined and analyzed. It was found that the g and mu were affected by both extracts. At 4 mg mL(-1) of P. betle the g-values for S. sanguinis and S. mitis were increased by 12.0- and 10.4-fold, respectively (p < 0.05). At similar concentration P. guajava increased the g-value by 1.8- and 2.6 -fold, respectively (p < 0.05). The effect on Actinomyces sp. was observed at a much lower magnitude. It appears that P. betle and P. guajava extracts have bacteriostatic effect on the plaque bacteria by creating a stressed environment that had suppressed the growth and propagation of the cells. Within the context of the dental plaque, this would ensure the attainment of thin and healthy plaque. Thus, decoctions of these plants would be suitable if used in the control of dental plaque.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*; Bacteria/drug effects*
  17. Sabri NSA, Zakaria Z, Mohamad SE, Jaafar AB, Hara H
    Microbes Environ, 2018 Jul 04;33(2):144-150.
    PMID: 29709895 DOI: 10.1264/jsme2.ME17181
    A soil cooling system that prepares soil for temperate soil temperatures for the growth of temperate crops under a tropical climate is described herein. Temperate agriculture has been threatened by the negative impact of temperature increases caused by climate change. Soil temperature closely correlates with the growth of temperate crops, and affects plant processes and soil microbial diversity. The present study focuses on the effects of soil temperatures on lettuce growth and soil microbial diversity that maintains the growth of lettuce at low soil temperatures. A model temperate crop, loose leaf lettuce, was grown on eutrophic soil under soil cooling and a number of parameters, such as fresh weight, height, the number of leaves, and root length, were evaluated upon harvest. Under soil cooling, significant differences were observed in the average fresh weight (P<0.05) and positive development of the roots, shoots, and leaves of lettuce. Janthinobacterium (8.142%), Rhodoplanes (1.991%), Arthrospira (1.138%), Flavobacterium (0.857%), Sphingomonas (0.790%), Mycoplana (0.726%), and Pseudomonas (0.688%) were the dominant bacterial genera present in cooled soil. Key soil fungal communities, including Pseudaleuria (18.307%), Phoma (9.968%), Eocronartium (3.527%), Trichosporon (1.791%), and Pyrenochaeta (0.171%), were also recovered from cooled soil. The present results demonstrate that the growth of temperate crops is dependent on soil temperature, which subsequently affects the abundance and diversity of soil microbial communities that maintain the growth of temperate crops at low soil temperatures.
    Matched MeSH terms: Bacteria/classification
  18. Lee CW, Bong CW, Hii YS
    Appl Environ Microbiol, 2009 Dec;75(24):7594-601.
    PMID: 19820145 DOI: 10.1128/AEM.01227-09
    We investigated the temporal variation of bacterial production, respiration, and growth efficiency in the tropical coastal waters of Peninsular Malaysia. We selected five stations including two estuaries and three coastal water stations. The temperature was relatively stable (averaging around 29.5 degrees C), whereas salinity was more variable in the estuaries. We also measured dissolved organic carbon and nitrogen (DOC and DON, respectively) concentrations. DOC generally ranged from 100 to 900 microM, whereas DON ranged from 0 to 32 microM. Bacterial respiration ranged from 0.5 to 3.2 microM O2 h(-1), whereas bacterial production ranged from 0.05 to 0.51 microM C h(-1). Bacterial growth efficiency was calculated as bacterial production/(bacterial production + respiration), and ranged from 0.02 to 0.40. Multiple correlation analyses revealed that bacterial production was dependent upon primary production (r2 = 0.169, df = 31, and P < 0.02) whereas bacterial respiration was dependent upon both substrate quality (i.e., DOC/DON ratio) (r2 = 0.137, df = 32, and P = 0.03) and temperature (r2 = 0.113, df = 36, and P = 0.04). Substrate quality was the most important factor (r2 = 0.119, df = 33, and P = 0.04) for the regulation of bacterial growth efficiency. Using bacterial growth efficiency values, the average bacterial carbon demand calculated was from 5.30 to 11.28 microM C h(-1). When the bacterial carbon demand was compared with primary productivity, we found that net heterotrophy was established at only two stations. The ratio of bacterial carbon demand to net primary production correlated significantly with bacterial growth efficiency (r2 = 0.341, df = 35, and P < 0.001). From nonlinear regression analysis, we found that net heterotrophy was established when bacterial growth efficiency was <0.08. Our study showed the extent of net heterotrophy in these waters and illustrated the importance of heterotrophic microbial processes in coastal aquatic food webs.
    Matched MeSH terms: Bacteria/growth & development*; Bacterial Physiological Phenomena*
  19. Fayyaz Z, Farrukh MA, Ul-Hamid A, Chong KK
    Microsc Res Tech, 2024 May;87(5):957-976.
    PMID: 38174385 DOI: 10.1002/jemt.24487
    The present exploration demonstrates the efficient, sustainable, cost-effective, and environment-friendly green approach for the synthesis of silver (Ag)-doped copper oxide (CuO) embedded with reduced graphene oxide (rGO) nanocomposite using the green one-pot method and the green deposition method. Leaf extracts of Ficus carica and Azadirachta indica were used for both methods as reducing and capping agents. The effect of methodology and plant extract was analyzed through different characterization techniques such as UV-visible spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), x-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM). The lowest band gap of 3.0 eV was observed for the Ag/CuO/rGO prepared by the green one-pot method using F. carica. The reduction of graphene oxide (GO) and the formation of metal oxide was confirmed through functional group detection using FT-IR. Calculation of thermodynamic parameters showed that all reactions involved were nonspontaneous and endothermic which shows the stability of nanocomposites. XRD studies revealed the crystallinity, phase purity and small average crystallite size of 32.67 nm. SEM images disclosed that the morphology of the nanocomposites was spherical with agglomeration and rough texture. The particle size of the nanocomposites calculated through HRTEM was found in agreement with the XRD results. The numerous properties of the synthesized nanocomposites enhanced their potential against the degradation of methylene blue, rhodamine B, and ciprofloxacin. The highest percentage degradation of Ag/CuO/rGO was found to be 97%, synthesized using the green one-pot method with F. carica against ciprofloxacin, which might be due to the lowest band gap, delayed electron-hole pair recombination, and large surface area available. The nanocomposites were also tested against the Gram-positive and Gram-negative bacteria. RESEARCH HIGHLIGHTS: Facile synthesis of Ag/CuO/rGO nanocomposite using a green one-pot method and the green deposition method. The lowest band gap of 3.0 eV was observed for nanocomposite prepared by a green one-pot method using Ficus carica. Least average crystallite size of 32.67 nm was found for nanocomposite prepared by a green one-pot method using F. carica. Highest antibacterial and catalytic activity (97%) was obtained against ciprofloxacin with nanocomposite prepared through green one-pot method using F. carica. A mechanism of green synthesis is proposed.
    Matched MeSH terms: Gram-Negative Bacteria; Gram-Positive Bacteria
  20. Ngu-Schwemlein M, Chin SF, Hileman R, Drozdowski C, Upchurch C, Hargrove A
    Bioorg Med Chem Lett, 2016 Apr 01;26(7):1745-9.
    PMID: 26923697 DOI: 10.1016/j.bmcl.2016.02.047
    We report the potential of carbon nanodots (CNDs) as a molecular scaffold for enhancing the antimicrobial activities of small dendritic poly(amidoamines) (PAMAM). Carbon nanodots prepared from sago starch are readily functionalized with PAMAM by using N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Electron microscopy images of these polyaminated CNDs show that they are approximately 30-60nm in diameter. Infrared and fluorescence spectroscopy analyses of the water-soluble material established the presence of the polyamidoaminated moiety and the intrinsic fluorescence of the nanodots. The polyaminated nanodots (CND-PAM1 and CND-PAM2) exhibit in vitro antimicrobial properties, not only to non-multidrug resistant bacteria but also to the corresponding Gram-negative multidrug bacteria. Their minimum inhibitory concentration (MIC) ranges from 8 to 64μg/mL, which is much lower than that of PAMAM G1 or the non-active PAMAM G0 and CNDs. Additionally, they show synergistic effect in combination with tetracycline or colistin. These preliminary results imply that CNDs can serve as a promising scaffold for facilitating the rational design of antimicrobial materials for combating the ever-increasing threat of antibiotic resistance. Moreover, their fluorescence could be pertinent to unraveling their mode of action for imaging or diagnostic applications.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry*; Bacteria/drug effects; Bacterial Infections/drug therapy
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links