Displaying publications 41 - 60 of 116 in total

Abstract:
Sort:
  1. Liam CK, Pang YK, Poh ME, Kow KS, Wong CK, Varughese R
    Respirol Case Rep, 2013 Sep;1(1):20-2.
    PMID: 25473531 DOI: 10.1002/rcr2.14
    Breast metastases from non-small cell lung carcinoma are rarely reported. We report a case of a female patient with primary adenocarcinoma of the lower lobe of her right lung presenting with a massive right-sided malignant pleural effusion. The tumor harbored an epidermal growth factor receptor insertion mutation in exon 20 but was anaplastic lymphoma kinase translocation negative. She did not respond to treatment with erlotinib. First- and second-line cytotoxic chemotherapy resulted in stable disease as the best responses. She developed right breast metastasis 20 months after her initial presentation. The rarity of the condition and the likely mechanism of the breast metastasis are discussed.
    Matched MeSH terms: Receptor Protein-Tyrosine Kinases
  2. Nin DS, Li F, Visvanathan S, Khan M
    Front Oncol, 2015;5:210.
    PMID: 26500885 DOI: 10.3389/fonc.2015.00210
    Nuclear receptor co-repressor (N-CoR) is the key component of generic co-repressor complex essential for the transcriptional control of genes involved in cellular hemostasis. We have recently reported that N-CoR actively represses Flt3, a key factor of hematopoietic stem cells (HSC) self-renewal and growth, and that de-repression of Flt3 by the misfolded N-CoR plays an important role in the pathogenesis of promyelocytic and monocytic acute myeloid leukemia (AML). The leukemic cells derived from the promyelocytic and monocytic AML are distinctly characterized by the ectopic reactivation of stem cell phenotypes in relatively committed myeloid compartment. However, the molecular mechanism underlying this phenomenon is not known. Here, we report that N-CoR function is essential for the commitment of primitive hematopoietic cells to the cells of myeloid lineage and that loss of N-CoR function due to misfolding is linked to the ectopic reactivation of generic stem cell phenotypes in promyelocytic and monocytic AML. Analysis of N-CoR and Flt3 transcripts in mouse hematopoietic cells revealed a positive correlation between N-CoR level and the commitment of myeloid cells and an inverse correlation between N-CoR and Flt3 levels in primitive as well as committed myeloid cells. Enforced N-CoR expression in mouse HSCs inhibited their growth and self-renewal potentials and promoted maturation toward cells of myeloid lineage, suggesting a role of N-CoR in the commitment of cells of myeloid lineage. In contrast to AML cells with natively folded N-CoR, primary and secondary promyelocytic and monocytic AML cells harboring the misfolded N-CoR were highly positive for Flt3 and myeloid antigen-based HSC marker CD34. Genetic and therapeutic restoration of N-CoR conformation significantly down-regulated the CD34 levels in monocytic AML cells, suggesting an important role of N-CoR in the suppression of CD34-based HSC phenotypes. These findings collectively suggest that N-CoR is crucial for the commitment of primitive hematopoietic cells to cells of myeloid lineage and that misfolded N-CoR may contribute to transformation of committed myeloid cells through the ectopic reactivation of Flt3/CD34-based stem cell phenotypes in promyelocytic and monocytic AML. Moreover, these findings provide novel mechanistic insights into the formation of leukemic stem cells in subsets of AML and identify the misfolded N-CoR as a subtype-specific biomarker of AML.
    Matched MeSH terms: fms-Like Tyrosine Kinase 3
  3. Yap PG, Gan CY
    Foods, 2021 Mar 22;10(3).
    PMID: 33810046 DOI: 10.3390/foods10030675
    Nature-derived tyrosinase inhibitors are of great industrial interest. Three monophenolase inhibitor peptides (MIPs) and three diphenolase inhibitor peptides (DIPs) from a previous study were investigated for their in vitro tyrosinase inhibitory effects, mode of inhibition, copper-chelating activity, sun protection factor (SPF) and antioxidant activities. DIP1 was found to be the most potent tyrosinase inhibitor (IC50 = 3.04 ± 0.39 mM), which could be due to the binding interactions between its aromatic amino acid residues (Y2 and D7) with tyrosinase hotspots (H85, V248, H258, H263, F264, R268, V283 and E322) and its ability to chelate copper ion within the substrate-binding pocket. The conjugated planar rings of tyrosine and tryptophan may interact with histidine within the active site to provide stability upon enzyme-peptide binding. This postulation was later confirmed as the Lineweaver-Burk analysis had identified DIP1 as a competitive inhibitor and DIP1 also showed 36.27 ± 1.17% of copper chelating activity. In addition, DIP1 provided the highest SPF value (11.9 ± 0.04) as well as ferric reducing antioxidant power (FRAP) (5.09 ± 0.13 mM FeSO4), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) (11.34 ± 0.90%) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) (29.14 ± 1.36%) free radical scavenging activities compared to other peptides. These results demonstrated that DIP1 could be a multifunctional anti-tyrosinase agent with pharmaceutical and cosmeceutical applications.
    Matched MeSH terms: Tyrosine
  4. Saiman MZ, Miettinen K, Mustafa NR, Choi YH, Verpoorte R, Schulte AE
    Plant Cell Tissue Organ Cult., 2018;134(1):41-53.
    PMID: 31007320 DOI: 10.1007/s11240-018-1398-5
    Previous studies showed that geraniol could be an upstream limiting factor in the monoterpenoid pathway towards the production of terpenoid indole alkaloid (TIA) in Catharanthus roseus cells and hairy root cultures. This shortage in precursor availability could be due to (1) limited expression of the plastidial geraniol synthase resulted in a low activity of the enzyme to catalyze the conversion of geranyl diphosphate to geraniol; or (2) the limitation of geraniol transport from plastids to cytosol. Therefore, in this study, C. roseus's geraniol synthase (CrGES) gene was overexpressed in either plastids or cytosol of a non-TIA producing C. roseus cell line. The expression of CrGES in the plastids or cytosol was confirmed and the constitutive transformation lines were successfully established. A targeted metabolite analysis using HPLC shows that the transformed cell lines did not produce TIA or iridoid precursors unless elicited with jasmonic acid, as their parent cell line. This indicates a requirement for expression of additional, inducible pathway genes to reach production of TIA in this cell line. Interestingly, further analysis using NMR-based metabolomics reveals that the overexpression of CrGES impacts primary metabolism differently if expressed in the plastids or cytosol. The levels of valine, leucine, and some metabolites derived from the shikimate pathway, i.e. phenylalanine and tyrosine were significantly higher in the plastidial- but lower in the cytosolic-CrGES overexpressing cell lines. This result shows that overexpression of CrGES in the plastids or cytosol caused alteration of primary metabolism that associated to the plant cell growth and development. A comprehensive omics analysis is necessary to reveal the full effect of metabolic engineering.
    Matched MeSH terms: Tyrosine
  5. Yong WT, Henry ES, Abdullah JO
    Trop Life Sci Res, 2010 Dec;21(2):115-30.
    PMID: 24575204
    Genetic engineering is a powerful tool for the improvement of plant traits. Despite reported successes in the plant kingdom, this technology has barely scratched the surface of the Melastomataceae family. Limited studies have led to some optimisation of parameters known to affect the transformation efficiency of these plants. The major finding of this study was to optimise the presence of selected enhancers [e.g., monosaccharides (D-glucose, D-galactose and D-fructose), tyrosine, aluminium chloride (AICI3) and ascorbic acid] to improve the transformation efficiency of Tibouchina semidecandra. Agrobacterium tumefaciens strain LBA4404 harbouring the disarmed plasmid pCAMBIA1304 was used to transform shoots and nodes of T. semidecandra. Different concentrations of the transformation enhancers were tested by using green fluorescent protein (GFP) as a reporter. The results obtained were based on the percentage of GFP expression, which was observed 14 days post-transformation. A combination of 120 μM galactose and 100 μM tyrosine supplemented with 600 μM AICI3 in the presence of 15 mg/l ascorbic acid gave the highest percentage of positive transformants for T. semidecandra shoots. Whereas 60 μM galactose and 50 μM tyrosine with 200 μM AICI3 in the presence of 15 mg/l ascorbic acid was optimum for T. semidecandra nodes. The presence of the hygromycin phosphotransferase II (hptII) transgene in the genomic DNA of putative T. semidecandra transformants was verified by PCR amplification with specific primers.
    Matched MeSH terms: Tyrosine
  6. Nadiah Abu, Nurul-Syakima Ab Mutalib, Rahman Jamal
    MyJurnal
    The invasion of cancer cells into the peritumoral, lymph node and perineural system could be detrimental
    on cancer patients. In colorectal cancer (CRC) patients, the presence of lymphovascular (LVI) and/or
    perineural (PNI) invasion could significantly influence on the survival rates, treatment options and
    recurrence tendencies. To date, no study has analyzed the molecular profile of the concomitant existence of
    LVI and PNI in CRC. Here, we reanalyzed The Cancer Genome Atlas (TCGA) CRC datasets and focused
    on cases where the information regarding LVI and PNI are available (n=176). We performed differential
    gene expression, methylation and microRNA analysis by comparing the groups having both or either LVI
    and PNI with the control group (LVI negative and PNI negative). Although there was no significant
    difference in the methylation and miRNA profiles, we identified a number of differentially expressed genes
    (DEGs). The comparison between the LVI+PNI+ and LVI-PNI- groups revealed key DEGs including
    SFTA2, PHACTR3, CRABP2, ODZ3, GRP, HAP1, CSDC2, TMEM59L and HDAC9. Meanwhile, in the
    LVI-PNI+ vs LVI-PNI- group, some of the DEGs found were PTPRR, EFNA2, FGF20, IGFL4, METRN
    and IGFBPL1. We believe that this study could be beneficial and add value to further understand the
    complex molecular profiles of CRC.
    Matched MeSH terms: Receptor-Like Protein Tyrosine Phosphatases, Class 7
  7. Siddique, M.A.M., Khan, M.S.K., Bhuiyan, M.K.A.
    MyJurnal
    Nutritional fact study has prime importance to make the species edible and commercially viable to the food consumers. The proximate chemical composition and amino acid profile of Gelidium pusillum were studied to understand the nutritional status. The red seaweed Gelidium pusillum was rich in dietary fibre (24.74 ± 1.05%), lipid (2.16 ± 0.61%) and ash content (21.15 ± 0.74%). The mean protein content (11.31 ± 1.02% DW) was within the range of 10-47% for green and red seaweeds and this range was higher than Gracilaria cornea (5.47% DW), Gracilaria changgi (6.90% DW) and Eucheuma cottonii (9.76% DW). Gelidium pusillum was found to contained all the essential amino acids, which accounted for 52.08% of the total amino acids. Tyrosine (26.2 mg g-1 protein), methionine (15.8 mg g-1 protein) and Lysine (48.3 mg g-1 protein) were the limiting amino acid of Gelidium pusillum. However, the levels of other essential amino acids were above the FAO/WHO requirement pattern (EAA score ranged from 1.14 to 1.62). Aspartic and glutamic acids constituted a substantial amount of the total amino acids (24.68% of total amino acid). The result from this study suggested that Gelidium pusillum could be utilized as a healthy food item for human consumption.
    Matched MeSH terms: Tyrosine
  8. Chan, Y.Y., Kim, K.H., Cheah, S.H.
    JUMMEC, 2011;14(2):1-4.
    MyJurnal
    Tyrosinase is a key enzyme that catalyzes melanogenesis in human skin. It oxidizes tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA) and subsequently to dopachrome, which further polymerizes to melanin pigments. Therefore finding an effective tyrosinase inhibitor, either from synthetic or natural sources, is not only useful as skin whitening agents in cosmetic application, but also beneficial in treating melanin-related disorders. The present study reports of the optimized and validated results of a cell-based tyrosinase assay using B16F10 murine melanoma cell line, which produces melanin pigments and has been used extensively in antimelanogenesis studies. The optimization studies involved 3 parameters (1) optimal seeding cell number per well for total protein extraction; (2) optimal dopachrome formation from enzymatic reaction between total protein (tyrosinase source) and L-DOPA (substrate); and (3) optimal incubation period after the addition of substrate. The present study demonstrates that using seeding cell number of 2 × 105 cells/well, total protein of 40 μg, L-Dopa of 5 mM,and at an incubation period of 1 hour at 37°C provided the optimal response on cultured melanoma cells. Kojic acid, a standard tyrosinase inhibitor, was used as a positive control in the optimized cell-based tyrosinase assay to validate the usefulness of the assay. CONCLUSION: The use of the mentioned protocol is sensitive to determine changes in melanoma cells as the result of tyrosine inhibitors.
    Matched MeSH terms: Tyrosine
  9. Abushouk AI, Negida A, Elshenawy RA, Zein H, Hammad AM, Menshawy A, et al.
    CNS Neurol Disord Drug Targets, 2018 Apr 26;17(1):14-21.
    PMID: 28571531 DOI: 10.2174/1871527316666170602101538
    Parkinson's disease (PD) is the most prevalent movement disorder in the world. The major pathological hallmarks of PD are death of dopaminergic neurons and the formation of Lewy bodies. At the moment, there is no cure for PD; current treatments are symptomatic. Investigators are searching for neuroprotective agents and disease modifying strategies to slow the progress of neurodegeneration. However, due to lack of data about the main pathological sequence of PD, many drug targets failed to provide neuroprotective effects in human trials. Recent evidence suggests the involvement of C-Abelson (c-Abl) tyrosine kinase enzyme in the pathogenesis of PD. Through parkin inactivation, alpha synuclein aggregation, and impaired autophagy of toxic elements. Experimental studies showed that (1) c-Abl activation is involved in neurodegeneration and (2) c-Abl inhibition shows neuroprotective effects and prevents dopaminergic neuronal' death. Current evidence from experimental studies and the first in-human trial shows that c-Abl inhibition holds the promise for neuroprotection against PD and therefore, justifies the movement towards larger clinical trials. In this review article, we discussed the role of c-Abl in PD pathogenesis and the findings of preclinical experiments and the first in-human trial. In addition, based on lessons from the last decade and current preclinical evidence, we provide recommendations for future research in this area.
    Matched MeSH terms: Protein-Tyrosine Kinases
  10. Lim YM, Eng WL, Chan HK
    Asian Pac J Cancer Prev, 2017 07 27;18(7):1925-1930.
    PMID: 28749622
    Background: In Malaysia, the treatment for chronic myeloid leukemia (CML) has long been delivered under the
    Malaysian Patient Assistance Program (MYPAP), but research on identifying factors contributing to non-adherence to
    tyrosine kinase inhibitors (TKIs) is still limited. The current study explored understanding and challenges of Malaysian
    CML patients in taking imatinib and nilotinib. Methods: Semi-structured, face-to-face interviews were conducted
    with 13 CML patients receiving treatment at a public tertiary care center, and were analyzed using the content analysis
    approach. Results: The patients generally demonstrated inadequate knowledge, particularly of the natural history and
    staging of CML, the function of TKIs, and the methods used for monitoring the effectiveness of treatment. A number of
    them also had experiences of withholding, skipping or altering the treatment, mainly due to the life-disturbing adverse
    drug effects (ADRs), forgetfulness, and religious and social issues. Besides, most of them were found having limited
    skills in managing the ADRs, and not using prompts as reminders to take the medications. Furthermore, even though
    nilotinib was generally perceived as better tolerated as compared with imatinib, the inconvenience caused by the need
    to take it twice daily and on an empty stomach was constantly highlighted by the patients. Conclusion: While TKIs
    are widely used for CML treatment in Malaysia, the findings have revealed a lack of patient education and awareness,
    which warrants an integrated plan to reinforce medication adherence.
    Matched MeSH terms: Protein-Tyrosine Kinases
  11. Loong TY, Chong DL, Jamal AR, Murad NA, Sabudin RZ, Fun LC
    EXCLI J, 2016;15:630-635.
    PMID: 28096792 DOI: 10.17179/excli2016-613
    Haemoglobin (Hb)-M Hyde Park, also known as Hb-M Akita is a rare type of hereditary Hb M due to autosomal dominant mutation of CAC>TAC on codon 92 of β globin gene resulting in the replacement of histidine by tyrosine on β globin chain. This variant Hb has a tendency to form methaemoglobin (metHb). The iron ion in metHb is oxidized to ferric (Fe3+) which is unable to carry oxygen and the patients manifest as cyanosis clinically. A 9-year-old Malay girl was incidentally found to be cyanotic when she presented to a health clinic. Laboratory investigations revealed raised methaemoglobin levels and Hb analysis findings were consistent with Hb-M Hyde Park. β gene sequencing confirmed a point mutation of CAC>TAC on codon 92 in one of the β genes. The family study done on the individuals with cyanosis showed similar findings. A diagnosis of heterozygous Hb-M Hyde Park was made. Patients with this variant Hb usually presented with cyanosis with mild haemolysis and maybe misdiagnosed as congenital heart disease. No further treatment is needed as patients are relatively asymptomatic. Although the disease is harmless in the heterozygous carriers but the offspring of the carriers may suffer severe haemolytic anaemia when the offspring also inherit other β haemoglobinopathies/thalassemia. This can happen due to high prevalence of β thalassemia carrier (3.5-4 %) found in Malaysia. At the time of writing, this is the first case of hereditary Hb-M Hyde Park diagnosed in a Malay family living in Malaysia.
    Matched MeSH terms: Tyrosine
  12. Su KY, Balasubramaniam VRMT
    Front Microbiol, 2019;10:2715.
    PMID: 31824472 DOI: 10.3389/fmicb.2019.02715
    The ability of self-replicating oncolytic viruses (OVs) to preferentially infect and lyse cancer cells while stimulating anti-tumor immunity of the host strongly indicates its value as a new field of cancer therapeutics to be further explored. The emergence of Zika virus (ZIKV) as a global health threat due to its recent outbreak in Brazil has caught the attention of the scientific community and led to the discovery of its oncolytic potential for the treatment of glioblastoma multiforme (GBM), the most common and fatal brain tumor with poor prognosis. Herein, we evaluate the neurotropism of ZIKV relative to the receptor tyrosine kinase AXL and its ligand Gas6 in viral entry and the RNA-binding protein Musashi-1 (MSI1) in replication which are also overexpressed in GBM, suggesting its potential for specific targeting of the tumor. Additionally, this review discusses genetic modifications performed to enhance safety and efficacy of ZIKV as well as speculates future directions for the OV therapy.
    Matched MeSH terms: Receptor Protein-Tyrosine Kinases
  13. Abdullah MN, Ali Y, Abd Hamid S
    Chem Biol Drug Des, 2022 Dec;100(6):921-934.
    PMID: 34651438 DOI: 10.1111/cbdd.13974
    Tyrosine kinase overexpression could result in an unfavourable consequence of cancer progression in the body. A number of kinase inhibitor drugs targeting various cancer-related protein kinases have been developed and proven successful in clinical therapy. Benzimidazole is one of the most studied scaffolds in the search for effective anticancer drugs. The association of various functional groups and the structural design of the compounds may influence the binding towards the receptor. Despite numerous publications on the design, synthesis and biological assays of benzimidazole derivatives, their inhibitory activities against epidermal growth factor receptor (EGFR), a receptor tyrosine kinase (RTK), have not been specifically analysed. This review covers recent research reports on the anticancer activity of benzimidazole derivatives focusing on EGFR expression cell lines, based on their structure-activity relationship study. We believe it would aid researchers to envision the challenges and explore benzimidazole's potentials as tyrosine kinase inhibitors.
    Matched MeSH terms: Protein-Tyrosine Kinases
  14. Prasher P, Sharma M, Chan Y, Singh SK, Anand K, Dureja H, et al.
    Curr Med Chem, 2023;30(13):1529-1567.
    PMID: 34766883 DOI: 10.2174/0929867328666211111161811
    Protein kinases modulate the structure and function of proteins by adding phosphate groups to threonine, tyrosine, and serine residues. The phosphorylation process mediated by the kinases regulates several physiological processes, while their overexpression results in the development of chronic diseases, including cancer. Targeting of receptor tyrosine kinase pathways results in the inhibition of angiogenesis and cell proliferation that validates kinases as a key target in the management of aggressive cancers. As such, the identification of protein kinase inhibitors revolutionized the contemporary anticancer therapy by inducing a paradigm shift in the management of disease pathogenesis. Contemporary drug design programs focus on a broad range of kinase targets for the development of novel pharmacophores to manage the overexpression of kinases and their pathophysiology in cancer pathogenesis. In this review, we present the emerging trends in the development of rationally designed molecular inhibitors of kinases over the last five years (2016-2021) and their incipient role in the development of impending anticancer pharmaceuticals.
    Matched MeSH terms: Receptor Protein-Tyrosine Kinases
  15. Filippova TA, Masamrekh RA, Shumyantseva VV, Latsis IA, Farafonova TE, Ilina IY, et al.
    Talanta, 2023 May 15;257:124341.
    PMID: 36821964 DOI: 10.1016/j.talanta.2023.124341
    In this work, we proposed a biosensor for trypsin proteolytic activity assay using immobilization of model peptides on screen-printed electrodes (SPE) modified with gold nanoparticles (AuNPs) prepared by electrosynthetic method. Sensing of proteolytic activity was based on electrochemical oxidation of tyrosine residues of peptides. We designed peptides containing N-terminal cysteine residue for immobilization on an SPE, modified with gold nanoparticles, trypsin-specific cleavage site and tyrosine residue as a redox label. The peptides were immobilized on SPE by formation of chemical bonds between mercapto groups of the N-terminal cysteine residues and AuNPs. After the incubation with trypsin, time-dependent cleavage of the immobilized peptides was observed by decline in tyrosine electrochemical oxidation signal. The kinetic parameters of trypsin, such as the catalytic constant (kcat), the Michaelis constant (KM) and the catalytic efficiency (kcat/KM), toward the CGGGRYR peptide were determined as 0.33 ± 0.01 min-1, 198 ± 24 nM and 0.0016 min-1 nM-1, respectively. Using the developed biosensor, we demonstrated the possibility of analysis of trypsin specificity toward the peptides with amino acid residues disrupting proteolysis. Further, we designed the peptides with proline or glutamic acid residues after the cleavage site (CGGRPYR and CGGREYR), and trypsin had reduced activity toward both of them according to the existing knowledge of the enzyme specificity. The developed biosensor system allows one to perform a comparative analysis of the protease steady-state kinetic parameters and specificity toward model peptides with different amino acid sequences.
    Matched MeSH terms: Tyrosine
  16. Salama M, Sobh M, Emam M, Abdalla A, Sabry D, El-Gamal M, et al.
    Exp Ther Med, 2017 Mar;13(3):976-982.
    PMID: 28450929 DOI: 10.3892/etm.2017.4073
    Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. It affects the locomotor system, leading to a final severe disability through degeneration of dopaminergic neurons. Despite several therapeutic approaches used, no treatment has been proven to be effective; however, cell therapy may be a promising therapeutic method. In addition, the use of the intranasal (IN) route has been advocated for delivering various therapies to the brain. In the present study, the IN route was used for administration of mesenchymal stem cells (MSCs) in a mouse model of PD, with the aim to evaluate IN delivery as an alternative route for cell based therapy administration in PD. The PD model was developed in C57BL/6 mice using intraperitoneal rotenone administration for 60 consecutive days. MSCs were isolated from the mononuclear cell fraction of pooled bone marrow from C57BL/6 mice and incubated with micrometer-sized iron oxide (MPIO) particles. For IN administration, we used a 20 µl of 5×10(5) cell suspension. Neurobehavioral assessment of the mice was performed, and after sacrifice, brain sections were stained with Prussian blue to detect the MPIO-labeled MSCs. In addition, immunohistochemical evaluation was conducted to detect tyrosine hydroxylase (TH) antibodies in the corpus striatum and dopaminergic neurons in the substantia nigra pars compacta (SNpc). The neurobehavioral assessment revealed progressive deterioration in the locomotor functions of the rotenone group, which was improved following MSC administration. Histopathological evaluation of brain sections in the rotenone+MSC group revealed successful delivery of MSCs, evidenced by positive Prussian blue staining. Furthermore, rotenone treatment led to significant decrease in dopaminergic neuron number in SNpc, as well as similar decrease in the corpus striatum fiber density. By contrast, in animals receiving IN administration of MSCs, the degeneration caused by rotenone treatment was significantly counteracted. In conclusion, the present study validated that IN delivery of MSCs may be a potential safe, easy and cheap alternative route for stem cell treatment in neurodegenerative disorders.
    Matched MeSH terms: Tyrosine 3-Monooxygenase
  17. Jafri AJA, Agarwal R, Iezhitsa I, Agarwal P, Spasov A, Ozerov A, et al.
    Mol Vis, 2018;24:495-508.
    PMID: 30090013
    Purpose: Retinal nitrosative stress associated with altered expression of nitric oxide synthases (NOS) plays an important role in excitotoxic retinal ganglion cell loss in glaucoma. The present study evaluated the effects of magnesium acetyltaurate (MgAT) on changes induced by N-methyl-D-aspartate (NMDA) in the retinal expression of three NOS isoforms, retinal 3-nitrotyrosine (3-NT) levels, and the extent of retinal cell apoptosis in rats. Effects of MgAT with taurine (TAU) alone were compared to understand the benefits of a combined salt of Mg and TAU.

    Methods: Excitotoxic retinal injury was induced with intravitreal injection of NMDA in Sprague-Dawley rats. All treatments were given as pre-, co-, and post-treatment with NMDA. Seven days post-injection, the retinas were processed for measurement of the expression of NOS isoforms using immunostaining and enzyme-linked immunosorbent assay (ELISA), retinal 3-NT content using ELISA, retinal histopathological changes using hematoxylin and eosin (H&E) staining, and retinal cell apoptosis using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining.

    Results: As observed on immunohistochemistry, the treatment with NMDA caused a 4.53-fold increase in retinal nNOS expression compared to the PBS-treated rats (p<0.001). Among the MgAT-treated groups, only the pretreatment group showed significantly lower nNOS expression than the NMDA-treated group with a 2.00-fold reduction (p<0.001). Among the TAU-treated groups, the pre- and cotreatment groups showed 1.84- and 1.71-fold reduction in nNOS expression compared to the NMDA-treated group (p<0.001), respectively, but remained higher compared to the PBS-treated group (p<0.01). Similarly, iNOS expression in the NMDA-treated group was significantly greater than that for the PBS-treated group (2.68-fold; p<0.001). All MgAT treatment groups showed significantly lower iNOS expression than the NMDA-treated groups (3.58-, 1.51-, and 1.65-folds, respectively). However, in the MgAT co- and post-treatment groups, iNOS expression was significantly greater than in the PBS-treated group (1.77- and 1.62-folds, respectively). Pretreatment with MgAT caused 1.77-fold lower iNOS expression compared to pretreatment with TAU (p<0.05). In contrast, eNOS expression was 1.63-fold higher in the PBS-treated group than in the NMDA-treated group (p<0.001). Among all treatment groups, only pretreatment with MgAT caused restoration of retinal eNOS expression with a 1.39-fold difference from the NMDA-treated group (p<0.05). eNOS expression in the MgAT pretreatment group was also 1.34-fold higher than in the TAU pretreatment group (p<0.05). The retinal NOS expression as measured with ELISA was in accordance with that estimated with immunohistochemistry. Accordingly, among the MgAT treatment groups, only the pretreated group showed 1.47-fold lower retinal 3-NT than the NMDA-treated group, and the difference was significant (p<0.001). The H&E-stained retinal sections in all treatment groups showed statistically significantly greater numbers of retinal cell nuclei than the NMDA-treated group in the inner retina. However, the ganglion cell layer thickness in the TAU pretreatment group remained 1.23-fold lower than that in the MgAT pretreatment group (p<0.05). In line with this observation, the number of apoptotic cells as observed after TUNEL staining was 1.69-fold higher after pretreatment with TAU compared to pretreatment with MgAT (p<0.01).

    Conclusions: MgAT and TAU, particularly with pretreatment, reduce retinal cell apoptosis by reducing retinal nitrosative stress. Pretreatment with MgAT caused greater improvement in NMDA-induced changes in iNOS and eNOS expression and retinal 3-NT levels than pretreatment with TAU. The greater reduction in retinal nitrosative stress after pretreatment with MgAT was associated with lower retinal cell apoptosis and greater preservation of the ganglion cell layer thickness compared to pretreatment with TAU.

    Matched MeSH terms: Tyrosine/analogs & derivatives; Tyrosine/antagonists & inhibitors; Tyrosine/metabolism
  18. Basabaeen AA, Abdelgader EA, BaHashwan OS, Babekir EA, Abdelateif NM, Bamusa SA, et al.
    BMC Res Notes, 2019 May 23;12(1):282.
    PMID: 31122288 DOI: 10.1186/s13104-019-4319-8
    OBJECTIVE: To investigate the ZAP-70 and CD38 expressions and their combined expressions in Sudanese B-CLL patients and their relationships with clinical and hematological characteristics as well as the disease staging at presentation.

    RESULTS: In the present cross-sectional descriptive study, analysis of ZAP-70 expression showed that 36/110 (32.7%) patients positively expressed ZAP-70 and insignificant higher presentation in intermediate and at advanced stages as well as no correlation was seen with hematological parameters and clinical features compared with negatively ZAP-70, on the other hand, 41/110 (37.3%) were CD38+ and no significant correlation was shown with the stage at presentation, clinical characteristics (except Splenomegaly, P = 0.02) and hematological parameters. However, in combined expressions of both ZAP-70 and CD38 together, 20/110 (18.2%) were concordantly ZAP-70+/CD38+, 53/110 (48.2%) concordantly ZAP-70-/CD38- and 37/110 (33.6%) either ZAP-70+ or CD38+, and these three groups showed insignificant correlation with clinical (except Splenomegaly, P = 0.03) and hematological parameters, and the stage at presentation. Our data showed the combined analysis of these two markers, lead to classify our patients into three subgroups (either concordant positive, negative or discordant expressions) with statistically insignificant correlation with clinical presentation (except Splenomegaly), hematological parameters and stage at presentation of B-CLL patients.

    Matched MeSH terms: ZAP-70 Protein-Tyrosine Kinase/blood; ZAP-70 Protein-Tyrosine Kinase/genetics*; ZAP-70 Protein-Tyrosine Kinase/immunology
  19. Thai AC, Mohan V, Khalid BA, Cockram CS, Pan CY, Zimmet P, et al.
    Diabetes Res Clin Pract, 2008 May;80(2):224-30.
    PMID: 18207602 DOI: 10.1016/j.diabres.2007.12.003
    In this paper, the islet autoimmunity status and relation to clinical characteristics, beta cell function and cardio-metabolic risk factors in young-onset Asian diabetic patients are evaluated at baseline. The study population consisted of 912 patients (from China, India, Malaysia and Singapore) with age 12-40 years and diabetes duration <12 months. Autoantibodies to glutamic acid decarboxylase (GADA) and tyrosine phosphatase (IA-2A), beta cell function and cardio-metabolic risk parameters were assessed. Among our young patient cohort, 105 (11.5%) patients were GADA and/or IA-2A positives (Ab +ve). Ab +ve patients were younger, leaner, had more severe hyperglycaemia and lower beta cell function. The frequency of metabolic syndrome was significantly lower in Ab +ve patients (27%) compared to Ab -ve patients (54%). However, a substantial proportion of patients in both groups of patients had atherogenic dyslipidaemia, hypertension and albuminuria (micro or macro). In our study cohort, only one in 10 Asian youth with new-onset diabetes had evidence of islet autoimmunity. At least 60% of Ab +ve and 50% of Ab -ve patients demonstrated classical features of type 1 and type 2 diabetes respectively. Regardless of autoimmunity status, the cardio-metabolic risk factors, in particular atherogenic dyslipidaemia, hypertension and albuminuria were common in our patients with young-onset diabetes.
    Matched MeSH terms: Protein Tyrosine Phosphatases/immunology
  20. Ramlan H, Damanhuri HA
    Exp Gerontol, 2020 01;129:110779.
    PMID: 31705967 DOI: 10.1016/j.exger.2019.110779
    BACKGROUND: Older people are likely to develop anorexia of aging. Rostral C1 (rC1) catecholaminergic neurons in rostral ventrolateral medulla (RVLM) are recently discovered its role in food intake control. It is well established that these neurons regulate cardiovascular function.

    OBJECTIVE: This study aims to determine the effect of age on the function of rostral C1 (rC1) neurons in mediating feeding response.

    METHOD: Male Sprague Dawley rats at 3-months (n = 22) and 24-months (n = 22) old were used and further divided into two subgroups; 1) treatment group with 2-deoxy-d-glucose (2DG) and 2) vehicle group. Feeding hormones such as cholecystokinin (CCK), ghrelin and leptin were analysed using enzyme-linked immunosorbent assay (ELISA). Rat brain was carefully dissected to obtain the brainstem RVLM region. Further analysis was carried out to determine the level of proteins and genes in RVLM that were associated with feeding pathway. Protein expression of tyrosine hydroxylase (TH), phosphorylated TH at Serine40 (pSer40TH), AMP-activated protein kinase (AMPK), phosphorylated AMPK (phospho AMPK) and neuropeptide Y Y5 receptor (NPY5R) were determined by western blot. Expression of TH, AMPK and NPY genes were determined by real-time PCR.

    RESULTS: This study showed that blood glucose level was elevated in young and old rats following 2DG administration. Plasma CCK-8 concentration was higher in the aged rats at basal and increased with 2DG administration in young rats, but the leptin and ghrelin showed no changes. Old rats showed higher TH and lower AMPK mRNA levels. Glucoprivation decreased AMPK mRNA level in young rats and decreased TH mRNA in old rats. Aged rC1 neurons showed higher NPY5R protein level. Following glucoprivation, rC1 neurons produced distinct molecular changes across age in which, in young rats, AMPK phosphorylation level was increased and in old rats, TH phosphorylation level was increased.

    CONCLUSION: These findings suggest that glucose-counterregulatory responses by rC1 neurons at least, contribute to the ability of young and old rats in coping glucoprivation. Age-induced molecular changes within rC1 neurons may attenuate the glucoprivic responses. This situation may explain the impairment of feeding response in the elderly.

    Matched MeSH terms: Tyrosine 3-Monooxygenase/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links