Displaying publications 41 - 60 of 125 in total

Abstract:
Sort:
  1. Chong CW, Goh YS, Convey P, Pearce D, Tan IK
    Extremophiles, 2013 Sep;17(5):733-45.
    PMID: 23812890 DOI: 10.1007/s00792-013-0555-3
    A range of small- to moderate-scale studies of patterns in bacterial biodiversity have been conducted in Antarctica over the last two decades, most suggesting strong correlations between the described bacterial communities and elements of local environmental heterogeneity. However, very few of these studies have advanced interpretations in terms of spatially associated patterns, despite increasing evidence of patterns in bacterial biogeography globally. This is likely to be a consequence of restricted sampling coverage, with most studies to date focusing only on a few localities within a specific Antarctic region. Clearly, there is now a need for synthesis over a much larger spatial to consolidate the available data. In this study, we collated Antarctic bacterial culture identities based on the 16S rRNA gene information available in the literature and the GenBank database (n > 2,000 sequences). In contrast to some recent evidence for a distinct Antarctic microbiome, our phylogenetic comparisons show that a majority (~75 %) of Antarctic bacterial isolates were highly similar (≥99 % sequence similarity) to those retrieved from tropical and temperate regions, suggesting widespread distribution of eurythermal mesophiles in Antarctic environments. However, across different Antarctic regions, the dominant bacterial genera exhibit some spatially distinct diversity patterns analogous to those recently proposed for Antarctic terrestrial macroorganisms. Taken together, our results highlight the threat of cross-regional homogenisation in Antarctic biodiversity, and the imperative to include microbiota within the framework of biosecurity measures for Antarctica.
    Matched MeSH terms: Phylogeography
  2. Schutze MK, Krosch MN, Armstrong KF, Chapman TA, Englezou A, Chomič A, et al.
    BMC Evol. Biol., 2012;12:130.
    PMID: 22846393
    Bactrocera dorsalis s.s. is a pestiferous tephritid fruit fly distributed from Pakistan to the Pacific, with the Thai/Malay peninsula its southern limit. Sister pest taxa, B. papayae and B. philippinensis, occur in the southeast Asian archipelago and the Philippines, respectively. The relationship among these species is unclear due to their high molecular and morphological similarity. This study analysed population structure of these three species within a southeast Asian biogeographical context to assess potential dispersal patterns and the validity of their current taxonomic status.
    Matched MeSH terms: Phylogeography
  3. Tan MP, Jamsari AF, Siti Azizah MN
    J Fish Biol, 2016 May;88(5):1932-48.
    PMID: 27027270 DOI: 10.1111/jfb.12956
    Genetic variability and differences in wild striped snakehead Channa striata from Malaysia were analysed by genotyping nine novel nuclear microsatellite loci. Analysis revealed moderate-to-high genetic diversity in most of the populations, indicative of large effective population sizes. The highly diversified populations are admixed populations and, therefore, can be recommended as potential candidates for selective breeding and conservation since they each contain most of the alleles found in their particular region. Three homogenous groups of the wild populations were identified, apparently separated by effective barriers, in accordance with contemporary drainage patterns. The highest population pairwise FST found between members of the same group reflects the ancient population connectivity; yet prolonged geographical isolation resulted in adaptation of alleles to local contemporary environmental change. A significant relationship between genetic distance and geographical isolation was observed (r = 0·644, P < 0·01). Anthropogenic perturbations indicated apparent genetic proximity between distant populations.
    Matched MeSH terms: Phylogeography
  4. Yap KP, Ho WS, Gan HM, Chai LC, Thong KL
    Front Microbiol, 2016;7:270.
    PMID: 26973639 DOI: 10.3389/fmicb.2016.00270
    Typhoid fever, caused by Salmonella enterica serovar Typhi, remains an important public health burden in Southeast Asia and other endemic countries. Various genotyping methods have been applied to study the genetic variations of this human-restricted pathogen. Multilocus sequence typing (MLST) is one of the widely accepted methods, and recently, there is a growing interest in the re-application of MLST in the post-genomic era. In this study, we provide the global MLST distribution of S. Typhi utilizing both publicly available 1,826 S. Typhi genome sequences in addition to performing conventional MLST on S. Typhi strains isolated from various endemic regions spanning over a century. Our global MLST analysis confirms the predominance of two sequence types (ST1 and ST2) co-existing in the endemic regions. Interestingly, S. Typhi strains with ST8 are currently confined within the African continent. Comparative genomic analyses of ST8 and other rare STs with genomes of ST1/ST2 revealed unique mutations in important virulence genes such as flhB, sipC, and tviD that may explain the variations that differentiate between seemingly successful (widespread) and unsuccessful (poor dissemination) S. Typhi populations. Large scale whole-genome phylogeny demonstrated evidence of phylogeographical structuring and showed that ST8 may have diverged from the earlier ancestral population of ST1 and ST2, which later lost some of its fitness advantages, leading to poor worldwide dissemination. In response to the unprecedented increase in genomic data, this study demonstrates and highlights the utility of large-scale genome-based MLST as a quick and effective approach to narrow the scope of in-depth comparative genomic analysis and consequently provide new insights into the fine scale of pathogen evolution and population structure.
    Matched MeSH terms: Phylogeography
  5. Akib NA, Tam BM, Phumee P, Abidin MZ, Tamadoni S, Mather PB, et al.
    PLoS One, 2015;10(3):e0119749.
    PMID: 25786216 DOI: 10.1371/journal.pone.0119749
    Phylogeographic patterns and population structure of the pelagic Indian mackerel, Rastrelliger kanagurta were examined in 23 populations collected from the Indonesian-Malaysian Archipelago (IMA) and the West Indian Ocean (WIO). Despite the vast expanse of the IMA and neighbouring seas, no evidence for geographical structure was evident. An indication that R. kanagurta populations across this region are essentially panmictic. This study also revealed that historical isolation was insufficient for R. kanagurta to attain migration drift equilibrium. Two distinct subpopulations were detected between the WIO and the IMA (and adjacent populations); interpopulation genetic variation was high. A plausible explanation for the genetic differentiation observed between the IMA and WIO regions suggest historical isolation as a result of fluctuations in sea levels during the late Pleistocene. This occurrence resulted in the evolution of a phylogeographic break for this species to the north of the Andaman Sea.
    Matched MeSH terms: Phylogeography
  6. Moura AE, Shreves K, Pilot M, Andrews KR, Moore DM, Kishida T, et al.
    Mol Phylogenet Evol, 2020 05;146:106756.
    PMID: 32028032 DOI: 10.1016/j.ympev.2020.106756
    Phylogeographic inference has provided extensive insight into the relative roles of geographical isolation and ecological processes during evolutionary radiations. However, the importance of cross-lineage admixture in facilitating adaptive radiations is increasingly being recognised, and suggested as a main cause of phylogenetic uncertainty. In this study, we used a double digest RADseq protocol to provide a high resolution (~4 Million bp) nuclear phylogeny of the Delphininae. Phylogenetic resolution of this group has been especially intractable, likely because it has experienced a recent species radiation. We carried out cross-lineage reticulation analyses, and tested for several sources of potential bias in determining phylogenies from genome sampling data. We assessed the divergence time and historical demography of T. truncatus and T. aduncus by sequencing the T. aduncus genome and comparing it with the T. truncatus reference genome. Our results suggest monophyly for the genus Tursiops, with the recently proposed T. australis species falling within the T. aduncus lineage. We also show the presence of extensive cross-lineage gene flow between pelagic and European coastal ecotypes of T. truncatus, as well as in the early stages of diversification between spotted (Stenella frontalis; Stenella attenuata), spinner (Stenella longirostris), striped (Stenella coeruleoalba), common (Delphinus delphis), and Fraser's (Lagenodelphis hosei) dolphins. Our study suggests that cross-lineage gene flow in this group has been more extensive and complex than previously thought. In the context of biogeography and local habitat dependence, these results improve our understanding of the evolutionary processes determining the history of this lineage.
    Matched MeSH terms: Phylogeography
  7. Adler PH, Takaoka H, Sofian-Azirun M, Chen CD, Suana IW
    Acta Trop, 2019 May;193:1-6.
    PMID: 30772330 DOI: 10.1016/j.actatropica.2019.02.017
    A recently described species of black fly, Simulium wayani Takaoka and Chen, from the island of Timor was chromosomally mapped to provide insights into its evolutionary and biogeographic history. The morphologically based species status of S. wayani is supported by a suite of fixed chromosomal rearrangements and unique sex chromosomes derived primarily from a large pool of polymorphisms in the S. ornatipes complex in Australia. The banding patterns of its polytene chromosomes indicate that S. wayani is closely related to a pair of homosequential cryptic species (S. norfolkense Dumbleton and S. ornatipes cytoform A2) in the S. ornatipes Skuse complex on mainland Australia; all three species uniquely share the same amplified band in their chromosomal complement. The low level of polymorphism and heterozygosity in S. wayani, relative to Australian populations of the S. ornatipes complex, suggests few colonization events from the larger land mass.
    Matched MeSH terms: Phylogeography
  8. van Zonneveld M, Rakha M, Tan SY, Chou YY, Chang CH, Yen JY, et al.
    Sci Rep, 2020 02 07;10(1):2111.
    PMID: 32034221 DOI: 10.1038/s41598-020-58646-8
    This study provides insights in patterns of distribution of abiotic and biotic stress resilience across Vigna gene pools to enhance the use and conservation of these genetic resources for legume breeding. Vigna is a pantropical genus with more than 88 taxa including important crops such as V. radiata (mung bean) and V. unguiculata (cowpea). Our results show that sources of pest and disease resistance occur in at least 75 percent of the Vigna taxa, which were part of screening assessments, while sources of abiotic stress resilience occur in less than 30 percent of screened taxa. This difference in levels of resilience suggests that Vigna taxa co-evolve with pests and diseases while taxa are more conservative to adapt to climatic changes and salinization. Twenty-two Vigna taxa are poorly conserved in genebanks or not at all. This germplasm is not available for legume breeding and requires urgent germplasm collecting before these taxa extirpate on farm and in the wild. Vigna taxa, which tolerate heat and drought stress are rare compared with taxa, which escape these stresses because of short growing seasons or with taxa, which tolerate salinity. We recommend prioritizing these rare Vigna taxa for conservation and screening for combined abiotic and biotic stress resilience resulting from stacked or multifunctional traits. The high presence of salinity tolerance compared with drought stress tolerance, suggests that Vigna taxa are good at developing salt-tolerant traits. Vigna taxa are therefore of high value for legume production in areas that will suffer from salinization under global climate change.
    Matched MeSH terms: Phylogeography
  9. Chiu YW, Gan YC, Kuo PH, Hsu KC, Tan MS, Ju YM, et al.
    Biochem Genet, 2018 Oct 26.
    PMID: 30367289 DOI: 10.1007/s10528-018-9892-3
    According to geological history, Peninsular Malaysia and Borneo formed at different times and were once connected during Quaternary glaciations. To determine how this history has influenced phylogeography, our study examined the population genetic structure of the tropical freshwater gastropod Melanoides tuberculata across Peninsular Malaysia and Borneo using the sequences from mitochondrial DNA 16S rRNA and cytochrome oxidase subunit I genes (1168 bp). In total, 104 specimens were collected from seventeen populations. All mtDNA haplotypes were identified as belonging to two highly divergent lineages, and these lineages were almost allopatric in their distributions. Our study found that the freshwater fauna in Malaysia might be divided into four regions: northeast Peninsular Malaysia, northwest Peninsular Malaysia, south Peninsular Malaysia, and Borneo. The phylogeography of M. tuberculata in Malaysia was shaped by the landforms of Peninsular Malaysia and by the paleo-river systems in the Sunda continental shelf. In addition, our study found that these two lineages in Malaysia have invaded the globe. These results suggest that Malaysia is located in important shipping lanes throughout the world, and the populations of M. tuberculate might be widely distributed throughout the world by shipping.
    Matched MeSH terms: Phylogeography
  10. Huang K, Zhang Y, Han Z, Zhou X, Song Y, Wang D, et al.
    PMID: 33102246 DOI: 10.3389/fcimb.2020.00475
    The subgenotype B5 of EV-A71 is a widely circulating subgenotype that frequently spreads across the globe. Several outbreaks have occurred in nations, such as Malaysia, Thailand, Vietnam, and Japan. Appearing first in Taiwan, China, the subgenotype has been frequently reported in mainland of China even though no outbreaks have been reported so far. The current study reconstructed the migration of the B5 subgenotype of EV-A71 in China via phylogeographical analysis. Furthermore, we investigated its population dynamics in order to draw more credible inferences. Following a dataset cleanup of B5 subgenotype of EV-A71, we detected earlier B5 subgenotypes of EV-A71 sequences that had been circulating in Malaysia and Singapore since the year 2000, which was before the 2003 outbreak that occurred in Sarawak. The Bayesian inference indicated that the most recent common ancestor of B5 subgenotype EV-A71 appeared in September, 1994 (1994.75). With respect to the overall prevalence, geographical reconstruction revealed that the B5 subgenotype EV-A71 originated singly from single-source cluster and subsequently developed several active lineages. Based on a large amount of data that was accumulated, we conclude that the appearance of the B5 subgenotype of EV-A71 in mainland of China was mainly due to multiple migrations from different origins.
    Matched MeSH terms: Phylogeography
  11. Heo CC, Aisha S, Kurahashi H, Omar B
    Trop Biomed, 2013 Mar;30(1):159-63.
    PMID: 23665723 MyJurnal
    Isomyia paurogonita Fang & Fan, 1986 (Diptera: Calliphoridae), a rare species of the subfamily Rhiniinae (tribe Cosminini) was recorded for the first time in Malaysia. We collected one male and two females during a field trip conducted at Genting Highland, Pahang, peninsular Malaysia in May 2011. A 3-day old cow liver was offered as attractant and dipterans collected were transferred to the laboratory for specimens processing and identification. The adults of I. paurogonita were attracted to the odour and then captured by using a sweep net. Isomyia paurogonita was also recorded from two other localities in Peninsular and Malaysian Borneo, namely Gombak Utara, Selangor and Sibu, Sarawak.
    Matched MeSH terms: Phylogeography
  12. Seri Masran SNA, Ab Majid AH
    J Med Entomol, 2017 Jul 01;54(4):974-979.
    PMID: 28399302 DOI: 10.1093/jme/tjw227
    The tropical bed bug is scientifically recognized as a significant public health problem. While there is an increased awareness about their resurgence by medical and life science committees, efficient bed bug management still remains unresolved. The solution may soon arise, as information about bed bugs' infestation dynamics and systematics are becoming more distinguishable. Recent developments in studies about bed bugs are based on molecular intervention by determining their genetic variation and phylogeography. The aim of this study is to assess the phylogenetic relationships and genetic diversity among the populations of tropical bed bugs inhabiting Malaysia. A molecular genotyping study was conducted with 22 tropical bed bug populations composed of three individuals per population. The mitochondrial (COI) gene was used as a marker. The data obtained were analyzed using the T-Coffee, ClustalX, MEGA 6.0, and PAUP software. The results showed one main monophyletic clade that consisted of two groups: Ch01 and Ch02. Ch02 consists of samples from the Bandar Hilir population, differing from the other populations studied by one singleton base. However, as there were no changes in the amino acid, this singleton genetic variation was considered to have no effect on genetic differentiation. Ch01 shows similarity with some sequence of Cimex hemipterus (F.) from Thailand, suggesting an international diversity connection. The disparity index apparently suggests that all isolates are homogeneous populations and are supported by the low value of the mean pairwise distance between isolates. This study will increase the knowledge about phylogeographic diversity of tropical bed bug in Malaysia.
    Matched MeSH terms: Phylogeography
  13. Murphy B, Forest F, Barraclough T, Rosindell J, Bellot S, Cowan R, et al.
    Mol Phylogenet Evol, 2020 03;144:106668.
    PMID: 31682924 DOI: 10.1016/j.ympev.2019.106668
    Nepenthaceae is one of the largest carnivorous plant families and features ecological and morphological adaptations indicating an impressive adaptive radiation. However, investigation of evolutionary and taxonomic questions is hindered by poor phylogenetic understanding, with previous molecular studies based on limited loci and taxa. We use high-throughput sequencing with a target-capture methodology based on a 353-loci, probe set to recover sequences for 197 samples, representing 151 described or putative Nepenthes species. Phylogenetic analyses were performed using supermatrix and maximum quartet species tree approaches. Our analyses confirm five Western outlier taxa, followed by N. danseri, as successively sister to the remainder of the group. We also find mostly consistent recovery of two major Southeast Asian clades. The first contains common or widespread lowland species plus a Wallacean-New Guinean clade. Within the second clade, sects. Insignes and Tentaculatae are well supported, while geographically defined clades representing Sumatra, Indochina, Peninsular Malaysia, Palawan, Mindanao and Borneo are also consistently recovered. However, we find considerable conflicting signal at the site and locus level, and often unstable backbone relationships. A handful of Bornean taxa are inconsistently placed and require further investigation. We make further suggestions for a modified infra-generic classification of genus Nepenthes.
    Matched MeSH terms: Phylogeography
  14. Lamb AM, Gan HM, Greening C, Joseph L, Lee YP, Morán-Ordóñez A, et al.
    Mol Ecol, 2018 02;27(4):898-918.
    PMID: 29334409 DOI: 10.1111/mec.14488
    Diversifying selection between populations that inhabit different environments can promote lineage divergence within species and ultimately drive speciation. The mitochondrial genome (mitogenome) encodes essential proteins of the oxidative phosphorylation (OXPHOS) system and can be a strong target for climate-driven selection (i.e., associated with inhabiting different climates). We investigated whether Pleistocene climate changes drove mitochondrial selection and evolution within Australian birds. First, using phylogeographic analyses of the mitochondrial ND2 gene for 17 songbird species, we identified mitochondrial clades (mitolineages). Second, using distance-based redundancy analyses, we tested whether climate predicts variation in intraspecific genetic divergence beyond that explained by geographic distances and geographic position. Third, we analysed 41 complete mitogenome sequences representing each mitolineage of 17 species using codon models in a phylogenetic framework and a biochemical approach to identify signals of selection on OXPHOS protein-coding genes and test for parallel selection in mitolineages of different species existing in similar climates. Of 17 species examined, 13 had multiple mitolineages (range: 2-6). Climate was a significant predictor of mitochondrial variation in eight species. At least two amino acid replacements in OXPHOS complex I could have evolved under positive selection in specific mitolineages of two species. Protein homology modelling showed one of these to be in the loop region of the ND6 protein channel and the other in the functionally critical helix HL region of ND5. These findings call for direct tests of the functional and evolutionary significance of mitochondrial protein candidates for climate-associated selection.
    Matched MeSH terms: Phylogeography
  15. Huang C, Yu W, Xu Z, Qiu Y, Chen M, Qiu B, et al.
    Int J Biol Sci, 2014;10(2):200-11.
    PMID: 24550688 DOI: 10.7150/ijbs.7301
    Three distinct bamboo bat species (Tylonycteris) are known to inhabit tropical and subtropical areas of Asia, i.e., T. pachypus, T. robustula, and T. pygmaeus. This study performed karyotypic examinations of 4 specimens from southern Chinese T. p. fulvidus populations and one specimen from Thai T. p. fulvidus population, which detected distinct karyotypes (2n=30) compared with previous karyotypic descriptions of T. p. pachypus (2n=46) and T. robustula (2n=32) from Malaysia. This finding suggested a cryptic Tylonycteris species within T. pachypus complex in China and Thailand. Morphometric studies indicated the difficulty in distinguishing the cryptic species and T. p. pachypus from Indonesia apart from the external measurements, which might be the reason for their historical misidentification. Based on 623 bp mtDNA COI segments, a phylogeographic examination including T. pachypus individuals from China and nearby regions, i.e., Vietnam, Laos, and Cambodia, was conducted to examine the population genetic structure. Genealogical and phylogeographical results indicated that at least two diverged lineages existed in these regions (average 3.4 % of Kimura 2-parameter distances) and their population structure did not match the geographic pattern. These results suggested that at least two historical colonizations have occurred by the cryptic species. Furthermore, through integration of traditional and geometric morphological results, morphological differences on zygomatic arches, toothrows and bullae were detected between two lineages in China. Given the similarity of vegetation and climate of Guangdong and Guangxi regions, we suggested that such differences might be derived from their historical adaptation or distinct evolutionary history rather than the differences of habitats they occurred currently.
    Matched MeSH terms: Phylogeography
  16. Arciero E, Kraaijenbrink T, Asan, Haber M, Mezzavilla M, Ayub Q, et al.
    Mol Biol Evol, 2018 Aug 01;35(8):1916-1933.
    PMID: 29796643 DOI: 10.1093/molbev/msy094
    We genotyped 738 individuals belonging to 49 populations from Nepal, Bhutan, North India, or Tibet at over 500,000 SNPs, and analyzed the genotypes in the context of available worldwide population data in order to investigate the demographic history of the region and the genetic adaptations to the harsh environment. The Himalayan populations resembled other South and East Asians, but in addition displayed their own specific ancestral component and showed strong population structure and genetic drift. We also found evidence for multiple admixture events involving Himalayan populations and South/East Asians between 200 and 2,000 years ago. In comparisons with available ancient genomes, the Himalayans, like other East and South Asian populations, showed similar genetic affinity to Eurasian hunter-gatherers (a 24,000-year-old Upper Palaeolithic Siberian), and the related Bronze Age Yamnaya. The high-altitude Himalayan populations all shared a specific ancestral component, suggesting that genetic adaptation to life at high altitude originated only once in this region and subsequently spread. Combining four approaches to identifying specific positively selected loci, we confirmed that the strongest signals of high-altitude adaptation were located near the Endothelial PAS domain-containing protein 1 and Egl-9 Family Hypoxia Inducible Factor 1 loci, and discovered eight additional robust signals of high-altitude adaptation, five of which have strong biological functional links to such adaptation. In conclusion, the demographic history of Himalayan populations is complex, with strong local differentiation, reflecting both genetic and cultural factors; these populations also display evidence of multiple genetic adaptations to high-altitude environments.
    Matched MeSH terms: Phylogeography
  17. Martins RF, Fickel J, Le M, van Nguyen T, Nguyen HM, Timmins R, et al.
    BMC Evol. Biol., 2017 01 26;17(1):34.
    PMID: 28122497 DOI: 10.1186/s12862-017-0888-0
    BACKGROUND: The members of the genus Muntiacus are of particular interest to evolutionary biologists due to their extreme chromosomal rearrangements and the ongoing discussions about the number of living species. Red muntjacs have the largest distribution of all muntjacs and were formerly considered as one species. Karyotype differences led to the provisional split between the Southern Red Muntjac (Muntiacus muntjak) and the Northern Red Muntjac (M. vaginalis), but uncertainties remain as, so far, no phylogenetic study has been conducted. Here, we analysed whole mitochondrial genomes of 59 archival and 16 contemporaneous samples to resolve uncertainties about their taxonomy and used red muntjacs as model for understanding the evolutionary history of other species in Southeast Asia.

    RESULTS: We found three distinct matrilineal groups of red muntjacs: Sri Lankan red muntjacs (including the Western Ghats) diverged first from other muntjacs about 1.5 Mya; later northern red muntjacs (including North India and Indochina) and southern red muntjacs (Sundaland) split around 1.12 Mya. The diversification of red muntjacs into these three main lineages was likely promoted by two Pleistocene barriers: one through the Indian subcontinent and one separating the Indochinese and Sundaic red muntjacs. Interestingly, we found a high level of gene flow within the populations of northern and southern red muntjacs, indicating gene flow between populations in Indochina and dispersal of red muntjacs over the exposed Sunda Shelf during the Last Glacial Maximum.

    CONCLUSIONS: Our results provide new insights into the evolution of species in South and Southeast Asia as we found clear genetic differentiation in a widespread and generalist species, corresponding to two known biogeographical barriers: The Isthmus of Kra and the central Indian dry zone. In addition, our molecular data support either the delineation of three monotypic species or three subspecies, but more importantly these data highlight the conservation importance of the Sri Lankan/South Indian red muntjac.

    Matched MeSH terms: Phylogeography
  18. Gharamah AA, Rahman WA, Siti Azizah MN
    J Helminthol, 2014 Mar;88(1):82-8.
    PMID: 23176779 DOI: 10.1017/S0022149X12000776
    Haemonchus contortus is a highly pathogenic nematode parasite of sheep and goats. This work was conducted to investigate the population and host variations of the parasitic nematode H. contortus of sheep and goats from Malaysia and Yemen. Eight morphological characters were investigated, namely the total body length, cervical papillae, right spicule, left spicule, right barb, left barb, gubernaculum and cuticular ridge (synlophe) pattern. Statistical analysis showed the presence of morphological variation between populations of H. contortus from Malaysia and Yemen, with minor variation in the synlophe pattern of these isolates. Isolates from each country were grouped together in the scatterplots with no host isolation. Body, cervical papillae and spicule lengths were the most important characters that distinguished between populations of the two countries. This variation between Malaysia and Yemen may be attributed to geographical isolation and the possible presence of a different isolate of this worm in each country.
    Matched MeSH terms: Phylogeography
  19. Slik JW, Aiba S, Bastian M, Brearley FQ, Cannon CH, Eichhorn KA, et al.
    Proc Natl Acad Sci U S A, 2011 Jul 26;108(30):12343-7.
    PMID: 21746913 DOI: 10.1073/pnas.1103353108
    The marked biogeographic difference between western (Malay Peninsula and Sumatra) and eastern (Borneo) Sundaland is surprising given the long time that these areas have formed a single landmass. A dispersal barrier in the form of a dry savanna corridor during glacial maxima has been proposed to explain this disparity. However, the short duration of these dry savanna conditions make it an unlikely sole cause for the biogeographic pattern. An additional explanation might be related to the coarse sandy soils of central Sundaland. To test these two nonexclusive hypotheses, we performed a floristic cluster analysis based on 111 tree inventories from Peninsular Malaysia, Sumatra, and Borneo. We then identified the indicator genera for clusters that crossed the central Sundaland biogeographic boundary and those that did not cross and tested whether drought and coarse-soil tolerance of the indicator genera differed between them. We found 11 terminal floristic clusters, 10 occurring in Borneo, 5 in Sumatra, and 3 in Peninsular Malaysia. Indicator taxa of clusters that occurred across Sundaland had significantly higher coarse-soil tolerance than did those from clusters that occurred east or west of central Sundaland. For drought tolerance, no such pattern was detected. These results strongly suggest that exposed sandy sea-bed soils acted as a dispersal barrier in central Sundaland. However, we could not confirm the presence of a savanna corridor. This finding makes it clear that proposed biogeographic explanations for plant and animal distributions within Sundaland, including possible migration routes for early humans, need to be reevaluated.
    Matched MeSH terms: Phylogeography
  20. Slik JW, Arroyo-Rodríguez V, Aiba S, Alvarez-Loayza P, Alves LF, Ashton P, et al.
    Proc Natl Acad Sci U S A, 2015 Jun 16;112(24):7472-7.
    PMID: 26034279 DOI: 10.1073/pnas.1423147112
    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼ 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼ 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.
    Matched MeSH terms: Phylogeography
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links