Displaying publications 41 - 60 of 290 in total

Abstract:
Sort:
  1. Tan TL, Lim SH, Ruslan Mustapa M, Ganeswary R
    Med J Malaysia, 2020 11;75(6):742-744.
    PMID: 33219189
    Methicillin-resistant Staphylococcus aureus (MRSA) purulent pericarditis, characterised by frank pus collection or microscopic pyogenic effusion in the pericardium represents the most serious form of pericardial infection. The route of MRSA acquisition in pericardial abscess commonly occurs via the blood stream infection and it is more commonly observed among immunocompromised individuals. To date, diabetic foot ulcer infection rarely disseminates and becomes a nidus for pericardial infection. Herein, we report an unusual case of MRSA pericardial abscess in a 44-year-old man who presented at Hospital Seri Manjung, Malaysia with cardiac tamponade. Past medical history indicated that he was recently treated for infected diabetic foot ulcer with MRSA bacteraemia one week earlier. Despite adequate pericardial drainage and extended parenteral vancomycin therapy, this case ended in fatality on day 42 of admission due to nosocomial infection. It is hoped that this report serves to increase the vigilance among clinicians that diabetic foot ulcer infections have the potential to progress to pericardial abscess in the presence of MRSA bacteraemia, although they may appear seemingly innocuous at presentation. Systemic vancomycin must be instituted promptly when MRSA bacteraemia is confirmed in order to circumvent the propagation of MRSA.
    Matched MeSH terms: Methicillin; Methicillin-Resistant Staphylococcus aureus
  2. Kamaruzzaman NF, Pina MF, Chivu A, Good L
    Polymers (Basel), 2018 May 12;10(5).
    PMID: 30966555 DOI: 10.3390/polym10050521
    The treatment of skin and soft tissue infections caused by methicillin-resistant Staphylococcus aureus (MRSA) remains a challenge, partly due to localization of the bacteria inside the host's cells, where antimicrobial penetration and efficacy is limited. We formulated the cationic polymer polyhexamethylene biguanide (PHMB) with the topical antibiotic nadifloxacin and tested the activities against intracellular MRSA in infected keratinocytes. The PHMB/nadifloxacin nanoparticles displayed a size of 291.3 ± 89.6 nm, polydispersity index of 0.35 ± 0.04, zeta potential of +20.2 ± 4.8 mV, and drug encapsulation efficiency of 58.25 ± 3.4%. The nanoparticles killed intracellular MRSA, and relative to free polymer or drugs used separately or together, the nanoparticles displayed reduced toxicity and improved host cell recovery. Together, these findings show that PHMB/nadifloxacin nanoparticles are effective against intracellular bacteria and could be further developed for the treatment of skin and soft tissue infections.
    Matched MeSH terms: Methicillin; Methicillin-Resistant Staphylococcus aureus
  3. Adnan SN, Ibrahim N, Yaacob WA
    Germs, 2017 Dec;7(4):186-192.
    PMID: 29264356 DOI: 10.18683/germs.2017.1125
    Introduction: Methicillin-resistant Staphylococcus aureus (MRSA) is a worldwide public health threat, displaying multiple antibiotic resistance that causes morbidity and mortality. Management of multidrug-resistant (MDR) MRSA infections is extremely difficult due to their inherent resistance to currently used antibiotics. New antibiotics are needed to combat the emergence of antimicrobial resistance.

    Methods: The in vitro effect of tannins was studied against MRSA reference strain (ATCC 43300) and MRSA clinical strains utilizing antimicrobial assays in conjunction with both scanning and transmission electron microscopy. To reveal the influence of tannins in MRSA protein synthesis disruption, we utilized next-generation sequencing (NGS) to provide further insight into the novel protein synthesis transcriptional response of MRSA exposed to these compounds.

    Results: Tannins possessed both bacteriostatic and bactericidal activity with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 0.78 and 1.56 mg/mL, respectively, against all tested MRSA. Scanning and transmission electron microscopy of MRSA treated with tannins showed decrease in cellular volume, indicating disruption of protein synthesis.

    Conclusion: Analysis of a genome-wide transcriptional profile of the reference strain ATCC 43300 MRSA in response to tannins has led to the finding that tannins induced significant modulation in essential ribosome pathways, which caused a reduction in the translation processes that lead to inhibition of protein synthesis and obviation of bacterial growth. These findings highlight the potential of tannins as new promising anti-MRSA agents in clinical application such as body wash and topical cream or ointments.

    Matched MeSH terms: Methicillin; Methicillin-Resistant Staphylococcus aureus
  4. Suhaili Z, Rafee P', Mat Azis N, Yeo CC, Nordin SA, Abdul Rahim AR, et al.
    Germs, 2018 Mar;8(1):21-30.
    PMID: 29564245 DOI: 10.18683/germs.2018.1129
    Introduction: This study aims to assess the antimicrobial susceptibility profiles ofStaphylococcus aureusstrains isolated from university students and to determine the prevalence of constitutive and inducible clindamycin resistance, the latter being able to cause therapeutic failure due to false in vitro clindamycin susceptibility.

    Methods: S. aureus
    strains were isolated from the nasal swabs of 200 health sciences students of a Malaysian university. Twelve classes of antibiotics were used to evaluate the antimicrobial susceptibility profiles with the macrolide-lincosamide-streptogramin B (MLSB) phenotype for inducible clindamycin resistance determined by the double-diffusion test (D-test). Carriage of resistance and virulence genes was performed by PCR onS. aureusisolates that were methicillin resistant, erythromycin resistant and/or positive for the leukocidin gene,pvl(n=15).

    Results: Forty-nine isolates were viable and identified asS. aureuswith four of the isolates characterized as methicillin-resistantS. aureus(MRSA; 2.0%). All isolates were susceptible to the antibiotics tested except for penicillin (resistance rate of 49%), erythromycin (16%), oxacillin (8%), cefoxitin (8%) and clindamycin (4%). Of the eight erythromycin-resistant isolates, iMLSBwas identified in five isolates (three of which were also MRSA). The majority of the erythromycin-resistant isolates harbored themsrAgene (four iMLSB) with the remaining iMLSBisolate harboring theermCgene.

    Conclusion: The presence of MRSA isolates which are also iMLSBin healthy individuals suggests that nasal carriage may play a role as a potential reservoir for the transmission of these pathogens.

    Matched MeSH terms: Methicillin Resistance; Methicillin-Resistant Staphylococcus aureus
  5. Khan TM, Kok YL, Bukhsh A, Lee LH, Chan KG, Goh BH
    Germs, 2018 Sep;8(3):113-125.
    PMID: 30250830 DOI: 10.18683/germs.2018.1138
    Background: Burn victims admitted in burn intensive care units (ICU) are at a high risk of nosocomial infections generated by methicillin resistant Staphylococcus aureus (MRSA). This systematic review aims to estimate the incidence of MRSA among burn patients admitted to the ICU setting, with an emphasis on the incidence rate and antibiotic resistance profile of the MRSA strains.

    Methods: A systematic literature search was performed in five electronic databases limited to publication dates from 1st January 2000 until 31st August 2017. After screening n=481 articles, n=21 were found to meet the inclusion criteria of this systematic review.

    Results: Results from the meta-analysis revealed that the risk for MRSA isolates in the burn ICU was 55.0% higher (OR 0.55, 95%CI 0.32-0.94). Therefore, timely testing, appropriate hygiene practice and suggested wound care must be practiced while handling such patients.

    Conclusion: Further studies are needed to identify the risk factors of MRSA infections among burn patients and to develop new antimicrobial agents for MRSA infections.

    Matched MeSH terms: Methicillin; Methicillin-Resistant Staphylococcus aureus
  6. Arullappan S, Zakaria Z, Basri DF
    Trop Life Sci Res, 2009 Dec;20(2):109-18.
    PMID: 24575183 MyJurnal
    Hibiscus rosa sinensis, a member of the Malvaceae family, is widely cultivated in the tropics as an ornamental plant. It is often planted as a fence or hedge plant, and has several forms of flowers with varying colours. It is also used in traditional medicine to induce abortion, ease menstrual cramps, assist in childbirth and relieve headache, fever and inflammation. In this study, we evaluated the antibacterial activity of H. rosa sinesis extract using a disc diffusion method. Crude petroleum ether extract, ethyl acetate extract and methanol extract from the leaves, stems and flowers of the plant were prepared using a cold extraction technique. These extracts were tested at concentrations ranging from 4 mg/disc to 0.017 mg/disc against methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumonia. The petroleum ether extract from the leaves, stems and flowers and methanol extract from the leaves showed inhibition zones with diameters > 12 mm against MRSA. Overall, the petroleum ether extract from flowers at concentrations of 4 mg/disc and 2 mg/disc displayed the strongest inhibition zones of 18.6 ± 2.85 mm and 18.5 ± 0.29 mm, respectively, as compared to vancomycin (30 μg/ml), which did not differ significantly from the 18.0 ± 0.10 mm size of the vancomycin (30 μg/ml) inhibition zone (p < 0.05). In conclusion, H. rosa sinensis extract is a potential antibacterial agent for treating MRSA infection.
    Matched MeSH terms: Methicillin; Methicillin-Resistant Staphylococcus aureus
  7. Harlita TD, Oedjijono, Asnani A
    Trop Life Sci Res, 2018 Jul;29(2):39-52.
    PMID: 30112140 DOI: 10.21315/tlsr2018.29.2.4
    Antibacterial activity of indigenous Dayak onion (Eleutherine palmifolia (L.) Merr) was investigated. The Dayak onion was solvent extracted with n-hexane, ethyl acetate, and ethanol 96% consecutively. Each extract was tested its antibacterial activity towards methicillin-resistant Staphylococcus aureus (MRSA), Bacillus cereus, Shigella sp., and Pseudomonas aeruginosa using disc diffusion method. The test results showed that the n-hexane, ethyl acetate, and ethanol 96% extracts positively inhibited the growth of MRSA, B. cereus, Shigella sp., and P. aeruginosa. The highest inhibition activity of each extract was obtained with 10 mg/mL of extract concentration; whereas the minimum inhibitory concentration (MIC) of each extract was 2 mg/mL. Extract with the highest inhibition activity was ethyl acetate extract against B. cereus (139.58%). TLC evaluation of ethyl acetate extract showed four spots and bioautography indicated that ethyl acetate extract contained four types of compounds with inhibition activity against B. cereus, in which two compounds have higher antibacterial activity than the other two.
    Matched MeSH terms: Methicillin; Methicillin-Resistant Staphylococcus aureus
  8. Jiang L, Huang P, Ren B, Song Z, Zhu G, He W, et al.
    Appl Microbiol Biotechnol, 2021 Jun;105(12):4975-4986.
    PMID: 34146138 DOI: 10.1007/s00253-021-11226-w
    Marine microbes provide an important resource to discover new chemical compounds with biological activities beneficial to drug discovery. In our study, two new polyene macrolides, pyranpolyenolides A (1) and B (2), and one new natural cyclic peptide (9), together with two known polyenes (7 and 8) and three known cyclic peptides (10-12), were isolated from a culture of the marine Streptomyces sp. MS110128. In addition, four new polyene macrolides, pyranpolyenolides C-F (3-6), were identified as olefin geometric isomers that were most likely produced by photochemical conversion during the cultivation or isolation procedures. The pyranpolyenolides are 32-membered macrolides endowed with a conjugated tetraene and several pairs of 1,3-dihydroxyl groups. Pyranpolyenolides that contain a hydropyran group have not been previously reported. Four cyclic peptides (9-12) showed significant activities against Bacillus subtilis, Staphylococcus aureus, and methicillin-resistant S. aureus with supporting MIC values ranging from 0.025 to 1.25 μg/mL. These cyclic peptides containing piperazic moieties showed moderate activities with MIC values of 12.5 μg/mL against Bacille Calmette Guerin (BCG), an attenuated form of the bovine. Additionally, cyclic peptide 12 showed moderate antifungal activity against Candida albicans with an MIC value of 12.5 μg/mL. KEY POINTS: • Discovery of new polyenes and cyclic peptides from a marine-derived Actinomycete. • Cyclic peptides containing piperazic moieties exhibited good antibacterial activity.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus*
  9. Singh S, Numan A, Somaily HH, Gorain B, Ranjan S, Rilla K, et al.
    Mater Sci Eng C Mater Biol Appl, 2021 Oct;129:112384.
    PMID: 34579903 DOI: 10.1016/j.msec.2021.112384
    The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has become a threat to global health because of limited treatments. MRSA infections are difficult to treat due to increasingly developing resistance in combination with protective biofilms of Staphylococcus aureus (S. aureus). Nanotechnology-based research revealed that effective MRSA treatments could be achieved through targeted nanoparticles (NPs) that withstand biological films and drug resistance. Thus, the principal aim towards improving MRSA treatment is to advance drug delivery tools, which successfully address the delivery-related problems. These potential delivery tools would also carry drugs to the desired sites of therapeutic action to overcome the adverse effects. This review focused on different types of nano-engineered carriers system for antimicrobial agents with improved therapeutic efficacy of entrapped drugs. The structural characteristics that play an essential role in the effectiveness of delivery systems have also been addressed with a description of recent scientific advances in antimicrobial treatment, emphasizing challenges in MRSA treatments. Consequently, existing gaps in the literature are highlighted, and reported contradictions are identified, allowing for the development of roadmaps for future research.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus*
  10. Nazri Mohd Yusof, Ahmad Hafiz Zulkifly, Kamarul Ariffin Khalid, Zamzuri Zakaria, Aminuddin Che Ahmad, Mohamed Azril Mohamed Amin, et al.
    MyJurnal
    This is a prospective study on infection following fixation of closed fractures done in Hospital Tengku Ampuan Afzan ,Kuantan from May 2003 to May 2005. There were 23 cases in this study. The mean age of patient was 32.9 years (range 15 to 77). Twenty one were males and 2 females. Twenty (87%) infections occurred in the lower limb and only 3(13%) occurred in the upper limbs. Twenty two patients (91%) had plating done for the fracture. Infection following internal fixation is commonly a deep seated (96%) and florid (78%) infection in which 70% occur after the surgical wound has healed. Staphylococcus aureus is the commonest organism isolated in which 43% are Methicillin resistant (MRSA). Overall infection caused by gram negative organisms is more common than gram positive organisms.
    Matched MeSH terms: Methicillin Resistance; Methicillin-Resistant Staphylococcus aureus
  11. Musa Mohd Nordin, Wong, Swee Lan
    MyJurnal
    An outbreak of Methicillin Resistant Staphylococcus aureus (MRSA) in the Neonatal Intensive Care Unit (NICU), Seremban Hospital is reported. The pattern of colonisation and infection with the MRSA was studied for the 1 year period between May 1987 till April 1988. There were few serious MRSA infections. The majority of patients were either colonised or superficially infected. The organism was resistant to all Penicillins, Gentamicin and most Cephalosporins. Netilmicin and Amikacin have shown good activity against MRSA.
    Matched MeSH terms: Methicillin; Methicillin-Resistant Staphylococcus aureus
  12. Wong, HS, YH, William Chang, Neeta, K.B., Lum, SG, Seet, KC, Tan, HL, et al.
    Medicine & Health, 2008;3(2):294-299.
    MyJurnal
    Methicillin-resistant Staphylococcus aureus (MRSA) infection is important among vas-cular surgical patients. Its effect can be devastating resulting in limb amputation and mortality. We performed a retrospective patients record analysis to determine the pat-tern of MRSA infection among vascular surgical patients in Hospital Kuala Lumpur from January 2005 to December 2007. We also attempted to identify the factors asso-ciated with poor clinical outcome after such infection. There were 999 patients who underwent vascular surgeries in HKL within  the analysis period. Of these 24 patients (2.4%) were detected to have MRSA surgical site infection. The infection was commoner among cigarette smokers, patients with diabetes melitus and those who had previous vascular surgery. Most infections occurred in the emergency surgery category and manifested as wound breakdown. Fifty-four percent of the infected pa-tients ended with graft removal, amputations or death. MRSA infection complicating vascular surgery resulted in poor clinical outcome. This serious threat requires intensi-fied preventive measures.
    Matched MeSH terms: Methicillin; Methicillin-Resistant Staphylococcus aureus
  13. Kemung HM, Tan LT, Khan TM, Chan KG, Pusparajah P, Goh BH, et al.
    Front Microbiol, 2018;9:2221.
    PMID: 30319563 DOI: 10.3389/fmicb.2018.02221
    Methicillin-resistant Staphylococcus aureus (MRSA) pose a significant health threat as they tend to cause severe infections in vulnerable populations and are difficult to treat due to a limited range of effective antibiotics and also their ability to form biofilm. These organisms were once limited to hospital acquired infections but are now widely present in the community and even in animals. Furthermore, these organisms are constantly evolving to develop resistance to more antibiotics. This results in a need for new clinically useful antibiotics and one potential source are the Streptomyces which have already been the source of several anti-MRSA drugs including vancomycin. There remain large numbers of Streptomyces potentially undiscovered in underexplored regions such as mangrove, deserts, marine, and freshwater environments as well as endophytes. Organisms from these regions also face significant challenges to survival which often result in the production of novel bioactive compounds, several of which have already shown promise in drug development. We review the various mechanisms of antibiotic resistance in MRSA and all the known compounds isolated from Streptomyces with anti-MRSA activity with a focus on those from underexplored regions. The isolation of the full array of compounds Streptomyces are potentially capable of producing in the laboratory has proven a challenge, we also review techniques that have been used to overcome this obstacle including genetic cluster analysis. Additionally, we review the in vivo work done thus far with promising compounds of Streptomyces origin as well as the animal models that could be used for this work.
    Matched MeSH terms: Methicillin; Methicillin-Resistant Staphylococcus aureus
  14. Khanum R, Chung PY, Clarke SC, Chin BY
    Can J Microbiol, 2023 Feb 01;69(2):117-122.
    PMID: 36265186 DOI: 10.1139/cjm-2022-0135
    Lactoferrin is an innate glycoprotein with broad antibacterial and antibiofilm properties. The autonomous antibiofilm activity of lactoferrin against Gram-positive bacteria is postulated to involve the cell wall and biofilm components. Thus, the prevention of biomass formation and eradication of preformed biofilms by lactoferrin was investigated using a methicillin-resistant Staphylococcus epidermidis (MRSE) strain. Additionally, the ability of lactoferrin to modulate the expression of the biofilm-associated protein gene (bap) was studied. The bap gene regulates the production of biofilm-associated proteins responsible for bacterial adhesion and aggregation. In the in vitro biofilm assays, lactoferrin prevented biofilm formation and eradicated established biofilms for up to 24 and 72 h, respectively. Extensive eradication of MRSE biofilm biomass was accompanied by the significant upregulation of bap gene expression. These data suggest the interaction of lactoferrin with the biofilm components and cell wall of MRSE, including the biofilm-associated protein.
    Matched MeSH terms: Methicillin Resistance/genetics
  15. Hanifah YA
    Singapore Med J, 1991 Dec;32(6):438-40.
    PMID: 1788605
    Twenty-one isolates of methicillin-resistant Staphylococcus aureus (MRSA) from Malaysia (M-MRSA) derived from various sources associated with nosocomial infections were phage-typed and compared with 54 international isolates associated with epidemic and sporadic episodes of infections. It appeared that the majority of M-MRSA were non-typable by the international basic set of phages. Two (9.5%) were typed by phage 85. Phage-typing of MRSA revealed that the strains were almost completely restricted to phage groups III and a lesser portion to phage groups I and III.
    Matched MeSH terms: Methicillin Resistance*
  16. Islam MB, Islam MI, Nath N, Emran TB, Rahman MR, Sharma R, et al.
    Biomed Res Int, 2023;2023:9967591.
    PMID: 37250749 DOI: 10.1155/2023/9967591
    Multidrug-resistant (MDR) pathogens have created a fatal problem for human health and antimicrobial treatment. Among the currently available antibiotics, many are inactive against MDR pathogens. In this context, heterocyclic compounds/drugs play a vital role. Thus, it is very much essential to explore new research to combat the issue. Of the available nitrogen-bearing heterocyclic compounds/drugs, pyridine derivatives are of special interest due to their solubility. Encouragingly, some of the newly synthesized pyridine compounds/drugs are found to inhibit multidrug-resistant S. aureus (MRSA). Pyridine scaffold bearing poor basicity generally improves water solubility in pharmaceutically potential molecules and has led to the discovery of numerous broad-spectrum therapeutic agents. Keeping these in mind, we have reviewed the chemistry, recent synthetic techniques, and bacterial preventative activity of pyridine derivatives since 2015. This will facilitate the development of pyridine-based novel antibiotic/drug design in the near future as a versatile scaffold with limited side effects for the next-generation therapeutics.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus*
  17. Hasmukharay K, Ngoi ST, Saedon NI, Tan KM, Khor HM, Chin AV, et al.
    BMC Infect Dis, 2023 Apr 18;23(1):241.
    PMID: 37072768 DOI: 10.1186/s12879-023-08206-y
    BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is a major concern in the global healthcare system. However, data from Asian regions dealing with the singularity of this infection in older persons is lacking. We aimed to identify the differences in the clinical characteristics and outcomes of MRSA bacteremia between adults aged 18-64 and ≥ 65 years.

    METHODS: A retrospective study cohort was conducted at the University Malaya Medical Centre (UMMC) on cases of MRSA bacteremia from 2012 to 2016. Patient demographic and clinical data were collected for risk factors analyses.

    RESULTS: New cases of MRSA bacteremia showed a trend of increase from 0.12 to 100 admissions in 2012 to 0.17 per 100 admissions in 2016 but a drop was observed in 2014 (0.07 per 100 admissions). Out of the 275 patients with MRSA bacteremia, 139 (50.5%) patients were aged ≥ 65 years old. Co-morbidities and severity at presentation were significantly higher among older adults, including diabetes mellitus (p = 0.035), hypertension (p = 0.001), and ischemic heart disease (p 

    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus*
  18. Jamal HAA, Husaini A, Sing NN, Roslan HA, Zulkharnain A, Akinkunmi WA
    Braz J Microbiol, 2022 Dec;53(4):1857-1870.
    PMID: 36109458 DOI: 10.1007/s42770-022-00827-w
    This research evaluates the bioactivity of twelve endophytic fungi successfully isolated and characterised from Gynura procumbens. The fungal extracts displayed inhibitory activity against Staphylococcus aureus, Pseudomonas aeruginosa, Methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Salmonella typhi with the MIC and MBC of 5000 µg/mL. High antioxidant activity using DPPH free radical scavenging assay with inhibition of 86.6% and IC50 value of 104.25 ± 18.51 µg/mL were exhibited by ethyl acetate extract of Macrophomina phaseolina SN6. In contrast, the highest scavenging activity percentage of methanolic extract was exhibited by Mycoleptodiscus indicus SN4 (50.0%). Besides that, the highest ferric reducing antioxidant power (FRAP) value of ethyl acetate and methanolic extract was recorded from M. phaseolina SN6 (239.9 mg Fe (II)/g) and M. indicus SN4 (44.7 mg Fe (II)/g), respectively. Total phenolic content (TPC) and total flavonoid content (TFC) of ethyl acetate and methanolic fungal extracts were determined using Folin-Ciocalteu and aluminium chloride, respectively. The highest TPC for ethyl acetate and methanolic extracts were exhibited by Colletotrichum gloeosporioides SN11 (87.0 mg GAE/g) and M. indicus SN4 (35.0 mg GAE/g), whereas the highest TFC of ethyl acetate and methanolic extracts were showed by M. phaseolina SN6 (122.8 mg QCE/g) and M. indicus SN4 (60.4 mg QCE/g), respectively. Bioactive metabolites of isoelemicin (50.8%), terpinen-4-ol (21.5%), eucalyptol (24.3%), oleic acid (19.8%) and β-pinene (10.9%) were detected. Owing to the higher content of phytochemicals represented in the ethyl acetate extract of M. phaseolina, SN6 is therefore identified to be a superior candidate in exhibiting strong antioxidant and antimicrobial properties be fit for further pharmaceutical studies.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus*
  19. Chung PY
    Pathog Dis, 2023 Jan 17;81.
    PMID: 37422444 DOI: 10.1093/femspd/ftad016
    Staphylococcus aureus is the leading cause of hospital-acquired infections and can cause a wide range of diseases from mild skin infections to invasive diseases including deep surgical site infections, life-threatening bacteremia, and sepsis. This pathogen remains a challenge to manage due to its ability to rapidly develop resistance to antibiotic treatment and to form biofilms. Despite the current infection control measures which involve mainly antibiotics, the burden of infection remains high. The 'omics' approaches have not led to the discovery of novel antibacterials at a pace sufficient to cope with the emergence of multidrug-resistant and biofilm-forming S. aureus, Hence, new strategies for anti-infective therapies need to be explored urgently. One promising strategy is harnessing the immune response to enhance the protective antimicrobial immunity in the host. This review discusses the potential of monoclonal antibodies and vaccines as alternatives to treat and manage infections caused by planktonic and biofilms of S. aureus.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus*
  20. Zeshan MQ, Ashraf M, Omer MO, Anjum AA, Ali MA, Najeeb M, et al.
    Trop Biomed, 2023 Jun 01;40(2):174-182.
    PMID: 37650404 DOI: 10.47665/tb.40.2.008
    The present study was conducted to investigate the antimicrobial potential of essential oils of Curcuma longa and Syzygium aromaticum against multidrug-resistant pathogenic bacteria. Four identified bacterial isolates including Methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii were selected and their antibiotic sensitivity was checked by disc diffusion assay. C. longa and S. aromaticum were subjected to steam distillation to obtain their essential oils. The crude essential oils were fractioned by employing column chromatography. Crude essential oils and their fractions were evaluated for their antibacterial activity by agar well diffusion assay and minimum inhibitory concentrations were calculated. All the selected bacterial isolates showed resistance to three or more than three antibiotic groups and were declared as multidrugresistant (MDRs). Crude essential oils of C. longa and S. aromaticum exhibited antimicrobial activity against all selected isolates but S. aromaticum activity was better than the C. longa with a maximum 19.3±1.50 mm zone of inhibition against A. baumannii at 1.04 µL/mL MIC. GC/MS analysis revealed the abundance of components including eugenol, eugenyl acetate, b- caryophyllene, and a- Humulene in both crude oil and fractions of S. aromaticum. While the main components of C. longa essential oil were Ar-tumerone, a-tumerone, b- Tumerone, I-Phellandrene, a-zingibirene, b- sesquiphellandrene, and p- Cymene. This study highlights that plant-based essential oils could be a promising alternative to antibiotics for which pathogens have developed resistance. C. longa and S. aromaticum carry compounds that have antimicrobial potential against multiple drug-resistant bacteria including MRSA. E. coli, K. pneumoniae and A. baumannii.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links