METHODS: These models utilized experimental data of wavelengths and hemoglobin concentrations in building highly accurate Genetic Algorithm/Support Vector Regression model (GA-SVR).
RESULTS: The developed methodology showed high accuracy as indicated by the low root mean square error values of 4.65 × 10-4 and 4.62 × 10-4 for oxygenated and deoxygenated hemoglobin, respectively. In addition, the models exhibited 99.85 and 99.84% correlation coefficients (r) for the oxygenated and deoxygenated hemoglobin, thus, validating the strong agreement between the predicted and the experimental results CONCLUSIONS: Due to the accuracy and relative simplicity of the proposed models, we envisage that these models would serve as important references for future studies on optical properties of blood.
METHODS: PACKNOW was an open-label, randomized, controlled trial of acetaminophen (500 mg or 1000 mg every 6 hours for 72 hours) vs no acetaminophen in Malaysian patients aged ≥5 years with knowlesi malaria of any severity. The primary end point was change in creatinine at 72 hours. Secondary end points included longitudinal changes in creatinine in patients with severe malaria or acute kidney injury (AKI), stratified by hemolysis.
RESULTS: During 2016-2018, 396 patients (aged 12-96 years) were randomized to acetaminophen (n = 199) or no acetaminophen (n = 197). Overall, creatinine fell by a mean (standard deviation) 14.9% (18.1) in the acetaminophen arm vs 14.6% (16.0) in the control arm (P = .81). In severe disease, creatinine fell by 31.0% (26.5) in the acetaminophen arm vs 20.4% (21.5) in the control arm (P = .12), and in those with hemolysis by 35.8% (26.7) and 19% (16.6), respectively (P = .07). No difference was seen overall in patients with AKI; however, in those with AKI and hemolysis, creatinine fell by 34.5% (20.7) in the acetaminophen arm vs 25.9% (15.8) in the control arm (P = .041). Mixed-effects modeling demonstrated a benefit of acetaminophen at 72 hours (P = .041) and 1 week (P = .002) in patients with severe malaria and with AKI and hemolysis (P = .027 and P = .002, respectively).
CONCLUSIONS: Acetaminophen did not improve creatinine among the entire cohort but may improve renal function in patients with severe knowlesi malaria and in those with AKI and hemolysis.
CLINICAL TRIALS REGISTRATION: NCT03056391.
MATERIALS AND METHODS: This was a multi-institutional, retrospective study involving all consecutive patients (>15 years old) with patent ductus arteriosus and severe pulmonary hypertension. Patients who had patent ductus arteriosus closure were divided into the Good (no death or hospital admissions due to worsening pulmonary hypertension) and the Poor Outcome groups and these groups were compared.
RESULTS: Thirty-seven patients [male: 9 (24.3%); mean age: 30.49 ± 9.56 years; median follow-up: 3 (IQR: 1.5,10) years] were included from four centers. Twenty-two patients who underwent patent ductus arteriosus closure, 15 (71.4%) had good outcomes while 7 (28.6%) had poor outcomes. Pulmonary vascular resistance index and pulmonary to systemic resistance ratio (Rp:Rs) were lower in the Good Outcome Group (14.35 ± 1.66 Wood units x m2 vs. 20.07 ± 2.44; p = 0.033 and 0.44 ± 0.16 vs. 1.08 ± 1.21; p = 0.042). Haemoglobin concentrations (<14.3 g/dL) were associated with good long-term outcomes in the Closed Group.
CONCLUSIONS: Patients with patent ductus arteriosus with severe pulmonary hypertension have a dismal outcome with or without closure. High haemoglobin levels at the time of occlusion predict a worse outcome for patients with patent ductus arteriosus and pulmonary hypertension.
METHODS: ALPHA is an ongoing, international, phase 3, randomised, double-blind, placebo-controlled trial evaluating danicopan as add-on therapy to ravulizumab or eculizumab. Eligible patients were adults (age ≥18 years) with PNH and clinically significant extravascular haemolysis (haemoglobin ≤9·5 g/dL; absolute reticulocyte count ≥120 × 109/L) on ravulizumab or eculizumab for at least 6 months. Patients were randomly assigned (2:1) to danicopan or placebo added to ravulizumab or eculizumab for 12 weeks using an interactive response technology system. Randomisation was stratified based on transfusion history, haemoglobin, and patients enrolled from Japan. The initial oral danicopan dose was 150 mg three times a day; escalation to 200 mg three times a day was permitted based on clinical response. The infusion dose level of eculizumab (every 2 weeks) ranged from 900 mg to 1500 mg, and for ravulizumab (monthly or every 8 weeks) ranged from 3000 mg to 3600 mg. The primary endpoint was change in haemoglobin concentration from baseline to week 12. Here we present the protocol-prespecified interim analysis, planned when approximately 75% of participants were randomly assigned to treatment and completed or discontinued at 12 weeks. This trial is registered with ClinicalTrials.gov (NCT04469465).
FINDINGS: Individuals were randomly assigned between Dec 16, 2020, and Aug 29, 2022. At data cutoff (June 28, 2022), 73 individuals were randomly assigned, received treatment, and were analysed for safety (danicopan, n=49; placebo, n=24). The protocol-prespecified interim efficacy analysis set included the first 63 participants (danicopan, n=42; placebo, n=21). At week 12, danicopan plus ravulizumab or eculizumab increased haemoglobin versus placebo plus ravulizumab or eculizumab (least squares mean [LSM] change from baseline: danicopan, 2·94 g/dL [95% CI 2·52 to 3·36]; placebo, 0·50 g/dL [-0·13 to 1·12]; LSM difference, 2·44 g/dL [1·69 to 3·20]; p<0·0001). Grade 3 adverse events in the danicopan group were increased alanine aminotransferase (two [4%] of 49 patients), leukopenia (one [2%]), neutropenia (two [4%]), cholecystitis (one [2%]), COVID-19 (one [2%]), increased aspartate aminotransferase (one [2%]), and increased blood pressure (one [2%]), and in the placebo group were anaemia (one [4%] of 24 patients), thrombocytopenia (one [4%]), and asthenia (one [4%]). The serious adverse events reported in the danicopan group were cholecystitis (one [2%] patient) and COVID-19 (one [2%]) and in the placebo group were anaemia and abdominal pain, both in one (4%) patient. There were no serious adverse events related to study drug or deaths reported in the study.
INTERPRETATION: These primary efficacy and safety results show that danicopan as add-on treatment to ravulizumab or eculizumab significantly improved haemoglobin concentrations at week 12 with no new safety concerns, suggesting an improved benefit-risk profile in patients with PNH and clinically significant extravascular haemolysis.
FUNDING: Alexion, AstraZeneca Rare Disease.
METHODS: For this systematic review and individual patient data meta-analysis, we searched MEDLINE, Web of Science, Embase, and Cochrane Central for prospective clinical studies of uncomplicated P vivax from endemic countries published between Jan 1, 2000, and June 8, 2023. We included studies if they had active follow-up of at least 28 days, if they included a treatment group with daily primaquine given over multiple days where primaquine was commenced within 3 days of schizontocidal treatment and was given alone or coadministered with chloroquine or one of four artemisinin-based combination therapies (ie, artemether-lumefantrine, artesunate-mefloquine, artesunate-amodiaquine, or dihydroartemisinin-piperaquine), and if they recorded haemoglobin or haematocrit concentrations on day 0. We excluded studies if they were on prevention, prophylaxis, or patients with severe malaria, or if data were extracted retrospectively from medical records outside of a planned trial. For the meta-analysis, we contacted the investigators of eligible trials to request individual patient data and we then pooled data that were made available by Aug 23, 2021. The main outcome was haemoglobin reduction of more than 25% to a concentration of less than 7 g/dL by day 14. Haemoglobin concentration changes between day 0 and days 2-3 and between day 0 and days 5-7 were assessed by mixed-effects linear regression for patients with glucose-6-phosphate dehydrogenase (G6PD) activity of (1) 30% or higher and (2) between 30% and less than 70%. The study was registered with PROSPERO, CRD42019154470 and CRD42022303680.
FINDINGS: Of 226 identified studies, 18 studies with patient-level data from 5462 patients from 15 countries were included in the analysis. A haemoglobin reduction of more than 25% to a concentration of less than 7 g/dL occurred in one (0·1%) of 1208 patients treated without primaquine, none of 893 patients treated with a low daily dose of primaquine (<0·375 mg/kg per day), five (0·3%) of 1464 patients treated with an intermediate daily dose (0·375 mg/kg per day to <0·75 mg/kg per day), and six (0·5%) of 1269 patients treated with a high daily dose (≥0·75 mg/kg per day). The covariate-adjusted mean estimated haemoglobin changes at days 2-3 were -0·6 g/dL (95% CI -0·7 to -0·5), -0·7 g/dL (-0·8 to -0·5), -0·6 g/dL (-0·7 to -0·4), and -0·5 g/dL (-0·7 to -0·4), respectively. In 51 patients with G6PD activity between 30% and less than 70%, the adjusted mean haemoglobin concentration on days 2-3 decreased as G6PD activity decreased; two patients in this group who were treated with a high daily dose of primaquine had a reduction of more than 25% to a concentration of less than 7 g/dL. 17 of 18 included studies had a low or unclear risk of bias.
INTERPRETATION: Treatment of patients with G6PD activity of 30% or higher with 0·25-0·5 mg/kg per day primaquine regimens and patients with G6PD activity of 70% or higher with 0·25-1 mg/kg per day regimens were associated with similar risks of haemolysis to those in patients treated without primaquine, supporting the safe use of primaquine radical cure at these doses.
FUNDING: Australian National Health and Medical Research Council, Bill & Melinda Gates Foundation, and Medicines for Malaria Venture.
PATIENTS AND METHODS: This study was carried out on 297 newborns recruited consecutively at Naradhiwas Rajanagarindra Hospital in the south of Thailand. The SAO was identified on blood smear examination and polymerase chain reaction analysis. Thalassemia genotypes were defined. Hematologic parameters and hemoglobin (Hb) profiles were recorded and analyzed.
RESULTS: Among 297 newborns, 15 (5.1%) carried SAO, whereas 70 (23.6%) had thalassemia with 15 different thalassemia genotypes. Abnormal Hb including Hb C, Hb Q-Thailand, and Hb D-Punjab were observed in 5 newborns. It was found in the nonthalassemic newborns that RBC count, Hb, and hematocrit of the nonthalassemic newborns with SAO were significantly lower than those without SAO. The same finding was also observed in the thalassemic newborns; RBC count, Hb, and hematocrit of the thalassemic newborns with SAO were significantly lower than those without SAO. However, the mean corpuscular volume, mean corpuscular Hb, and RBC distribution width of the SAO-newborns were significantly higher.
CONCLUSIONS: Both SAO and hemoglobinopathy genotypes are common in southern Thailand. One should take this into consideration when evaluating neonatal anemia and other hematologic abnormalities. Identification of both genetic defects and long-term monitoring on the clinical outcome of this genetic interaction should be essential to understand the pathogenesis of these common genetic disorders in the region.